• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "Daltonizer.h"
18 #include <math/mat4.h>
19 
20 namespace android {
21 
setType(ColorBlindnessType type)22 void Daltonizer::setType(ColorBlindnessType type) {
23     if (type != mType) {
24         mDirty = true;
25         mType = type;
26     }
27 }
28 
setMode(ColorBlindnessMode mode)29 void Daltonizer::setMode(ColorBlindnessMode mode) {
30     if (mode != mMode) {
31         mDirty = true;
32         mMode = mode;
33     }
34 }
35 
operator ()()36 const mat4& Daltonizer::operator()() {
37     if (mDirty) {
38         mDirty = false;
39         update();
40     }
41     return mColorTransform;
42 }
43 
update()44 void Daltonizer::update() {
45     if (mType == ColorBlindnessType::None) {
46         mColorTransform = mat4();
47         return;
48     }
49 
50     // converts a linear RGB color to the XYZ space
51     const mat4 rgb2xyz( 0.4124, 0.2126, 0.0193, 0,
52                         0.3576, 0.7152, 0.1192, 0,
53                         0.1805, 0.0722, 0.9505, 0,
54                         0     , 0     , 0     , 1);
55 
56     // converts a XYZ color to the LMS space.
57     const mat4 xyz2lms( 0.7328,-0.7036, 0.0030, 0,
58                         0.4296, 1.6975, 0.0136, 0,
59                        -0.1624, 0.0061, 0.9834, 0,
60                         0     , 0     , 0     , 1);
61 
62     // Direct conversion from linear RGB to LMS
63     const mat4 rgb2lms(xyz2lms*rgb2xyz);
64 
65     // And back from LMS to linear RGB
66     const mat4 lms2rgb(inverse(rgb2lms));
67 
68     // To simulate color blindness we need to "remove" the data lost by the absence of
69     // a cone. This cannot be done by just zeroing out the corresponding LMS component
70     // because it would create a color outside of the RGB gammut.
71     // Instead we project the color along the axis of the missing component onto a plane
72     // within the RGB gammut:
73     //  - since the projection happens along the axis of the missing component, a
74     //    color blind viewer perceives the projected color the same.
75     //  - We use the plane defined by 3 points in LMS space: black, white and
76     //    blue and red for protanopia/deuteranopia and tritanopia respectively.
77 
78     // LMS space red
79     const vec3& lms_r(rgb2lms[0].rgb);
80     // LMS space blue
81     const vec3& lms_b(rgb2lms[2].rgb);
82     // LMS space white
83     const vec3 lms_w((rgb2lms * vec4(1)).rgb);
84 
85     // To find the planes we solve the a*L + b*M + c*S = 0 equation for the LMS values
86     // of the three known points. This equation is trivially solved, and has for
87     // solution the following cross-products:
88     const vec3 p0 = cross(lms_w, lms_b);    // protanopia/deuteranopia
89     const vec3 p1 = cross(lms_w, lms_r);    // tritanopia
90 
91     // The following 3 matrices perform the projection of a LMS color onto the given plane
92     // along the selected axis
93 
94     // projection for protanopia (L = 0)
95     const mat4 lms2lmsp(  0.0000, 0.0000, 0.0000, 0,
96                     -p0.y / p0.x, 1.0000, 0.0000, 0,
97                     -p0.z / p0.x, 0.0000, 1.0000, 0,
98                           0     , 0     , 0     , 1);
99 
100     // projection for deuteranopia (M = 0)
101     const mat4 lms2lmsd(  1.0000, -p0.x / p0.y, 0.0000, 0,
102                           0.0000,       0.0000, 0.0000, 0,
103                           0.0000, -p0.z / p0.y, 1.0000, 0,
104                           0     ,       0     , 0     , 1);
105 
106     // projection for tritanopia (S = 0)
107     const mat4 lms2lmst(  1.0000, 0.0000, -p1.x / p1.z, 0,
108                           0.0000, 1.0000, -p1.y / p1.z, 0,
109                           0.0000, 0.0000,       0.0000, 0,
110                           0     ,       0     , 0     , 1);
111 
112     // We will calculate the error between the color and the color viewed by
113     // a color blind user and "spread" this error onto the healthy cones.
114     // The matrices below perform this last step and have been chosen arbitrarily.
115 
116     // The amount of correction can be adjusted here.
117 
118     // error spread for protanopia
119     const mat4 errp(    1.0, 0.7, 0.7, 0,
120                         0.0, 1.0, 0.0, 0,
121                         0.0, 0.0, 1.0, 0,
122                           0,   0,   0, 1);
123 
124     // error spread for deuteranopia
125     const mat4 errd(    1.0, 0.0, 0.0, 0,
126                         0.7, 1.0, 0.7, 0,
127                         0.0, 0.0, 1.0, 0,
128                           0,   0,   0, 1);
129 
130     // error spread for tritanopia
131     const mat4 errt(    1.0, 0.0, 0.0, 0,
132                         0.0, 1.0, 0.0, 0,
133                         0.7, 0.7, 1.0, 0,
134                           0,   0,   0, 1);
135 
136     // And the magic happens here...
137     // We construct the matrix that will perform the whole correction.
138 
139     // simulation: type of color blindness to simulate:
140     // set to either lms2lmsp, lms2lmsd, lms2lmst
141     mat4 simulation;
142 
143     // correction: type of color blindness correction (should match the simulation above):
144     // set to identity, errp, errd, errt ([0] for simulation only)
145     mat4 correction(0);
146 
147     switch (mType) {
148         case ColorBlindnessType::Protanomaly:
149             simulation = lms2lmsp;
150             if (mMode == ColorBlindnessMode::Correction)
151                 correction = errp;
152             break;
153         case ColorBlindnessType::Deuteranomaly:
154             simulation = lms2lmsd;
155             if (mMode == ColorBlindnessMode::Correction)
156                 correction = errd;
157             break;
158         case ColorBlindnessType::Tritanomaly:
159             simulation = lms2lmst;
160             if (mMode == ColorBlindnessMode::Correction)
161                 correction = errt;
162             break;
163         case ColorBlindnessType::None:
164             // We already caught this at the beginning of the method, but the
165             // compiler doesn't know that
166             break;
167     }
168 
169     mColorTransform = lms2rgb *
170         (simulation * rgb2lms + correction * (rgb2lms - simulation * rgb2lms));
171 }
172 
173 } /* namespace android */
174