• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 1999, 2008, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.util;
27 import dalvik.annotation.optimization.ReachabilitySensitive;
28 import java.util.Date;
29 import java.util.concurrent.atomic.AtomicInteger;
30 
31 /**
32  * A facility for threads to schedule tasks for future execution in a
33  * background thread.  Tasks may be scheduled for one-time execution, or for
34  * repeated execution at regular intervals.
35  *
36  * <p>Corresponding to each <tt>Timer</tt> object is a single background
37  * thread that is used to execute all of the timer's tasks, sequentially.
38  * Timer tasks should complete quickly.  If a timer task takes excessive time
39  * to complete, it "hogs" the timer's task execution thread.  This can, in
40  * turn, delay the execution of subsequent tasks, which may "bunch up" and
41  * execute in rapid succession when (and if) the offending task finally
42  * completes.
43  *
44  * <p>After the last live reference to a <tt>Timer</tt> object goes away
45  * <i>and</i> all outstanding tasks have completed execution, the timer's task
46  * execution thread terminates gracefully (and becomes subject to garbage
47  * collection).  However, this can take arbitrarily long to occur.  By
48  * default, the task execution thread does not run as a <i>daemon thread</i>,
49  * so it is capable of keeping an application from terminating.  If a caller
50  * wants to terminate a timer's task execution thread rapidly, the caller
51  * should invoke the timer's <tt>cancel</tt> method.
52  *
53  * <p>If the timer's task execution thread terminates unexpectedly, for
54  * example, because its <tt>stop</tt> method is invoked, any further
55  * attempt to schedule a task on the timer will result in an
56  * <tt>IllegalStateException</tt>, as if the timer's <tt>cancel</tt>
57  * method had been invoked.
58  *
59  * <p>This class is thread-safe: multiple threads can share a single
60  * <tt>Timer</tt> object without the need for external synchronization.
61  *
62  * <p>This class does <i>not</i> offer real-time guarantees: it schedules
63  * tasks using the <tt>Object.wait(long)</tt> method.
64  *
65  * <p>Java 5.0 introduced the {@code java.util.concurrent} package and
66  * one of the concurrency utilities therein is the {@link
67  * java.util.concurrent.ScheduledThreadPoolExecutor
68  * ScheduledThreadPoolExecutor} which is a thread pool for repeatedly
69  * executing tasks at a given rate or delay.  It is effectively a more
70  * versatile replacement for the {@code Timer}/{@code TimerTask}
71  * combination, as it allows multiple service threads, accepts various
72  * time units, and doesn't require subclassing {@code TimerTask} (just
73  * implement {@code Runnable}).  Configuring {@code
74  * ScheduledThreadPoolExecutor} with one thread makes it equivalent to
75  * {@code Timer}.
76  *
77  * <p>Implementation note: This class scales to large numbers of concurrently
78  * scheduled tasks (thousands should present no problem).  Internally,
79  * it uses a binary heap to represent its task queue, so the cost to schedule
80  * a task is O(log n), where n is the number of concurrently scheduled tasks.
81  *
82  * <p>Implementation note: All constructors start a timer thread.
83  *
84  * @author  Josh Bloch
85  * @see     TimerTask
86  * @see     Object#wait(long)
87  * @since   1.3
88  */
89 
90 public class Timer {
91     /**
92      * The timer task queue.  This data structure is shared with the timer
93      * thread.  The timer produces tasks, via its various schedule calls,
94      * and the timer thread consumes, executing timer tasks as appropriate,
95      * and removing them from the queue when they're obsolete.
96      */
97     // Android-added: @ReachabilitySensitive
98     // Otherwise the finalizer may cancel the Timer in the middle of a
99     // sched() call.
100     @ReachabilitySensitive
101     private final TaskQueue queue = new TaskQueue();
102 
103     /**
104      * The timer thread.
105      */
106     // Android-added: @ReachabilitySensitive
107     @ReachabilitySensitive
108     private final TimerThread thread = new TimerThread(queue);
109 
110     /**
111      * This object causes the timer's task execution thread to exit
112      * gracefully when there are no live references to the Timer object and no
113      * tasks in the timer queue.  It is used in preference to a finalizer on
114      * Timer as such a finalizer would be susceptible to a subclass's
115      * finalizer forgetting to call it.
116      */
117     private final Object threadReaper = new Object() {
118         protected void finalize() throws Throwable {
119             synchronized(queue) {
120                 thread.newTasksMayBeScheduled = false;
121                 queue.notify(); // In case queue is empty.
122             }
123         }
124     };
125 
126     /**
127      * This ID is used to generate thread names.
128      */
129     private final static AtomicInteger nextSerialNumber = new AtomicInteger(0);
serialNumber()130     private static int serialNumber() {
131         return nextSerialNumber.getAndIncrement();
132     }
133 
134     /**
135      * Creates a new timer.  The associated thread does <i>not</i>
136      * {@linkplain Thread#setDaemon run as a daemon}.
137      */
Timer()138     public Timer() {
139         this("Timer-" + serialNumber());
140     }
141 
142     /**
143      * Creates a new timer whose associated thread may be specified to
144      * {@linkplain Thread#setDaemon run as a daemon}.
145      * A daemon thread is called for if the timer will be used to
146      * schedule repeating "maintenance activities", which must be
147      * performed as long as the application is running, but should not
148      * prolong the lifetime of the application.
149      *
150      * @param isDaemon true if the associated thread should run as a daemon.
151      */
Timer(boolean isDaemon)152     public Timer(boolean isDaemon) {
153         this("Timer-" + serialNumber(), isDaemon);
154     }
155 
156     /**
157      * Creates a new timer whose associated thread has the specified name.
158      * The associated thread does <i>not</i>
159      * {@linkplain Thread#setDaemon run as a daemon}.
160      *
161      * @param name the name of the associated thread
162      * @throws NullPointerException if {@code name} is null
163      * @since 1.5
164      */
Timer(String name)165     public Timer(String name) {
166         thread.setName(name);
167         thread.start();
168     }
169 
170     /**
171      * Creates a new timer whose associated thread has the specified name,
172      * and may be specified to
173      * {@linkplain Thread#setDaemon run as a daemon}.
174      *
175      * @param name the name of the associated thread
176      * @param isDaemon true if the associated thread should run as a daemon
177      * @throws NullPointerException if {@code name} is null
178      * @since 1.5
179      */
Timer(String name, boolean isDaemon)180     public Timer(String name, boolean isDaemon) {
181         thread.setName(name);
182         thread.setDaemon(isDaemon);
183         thread.start();
184     }
185 
186     /**
187      * Schedules the specified task for execution after the specified delay.
188      *
189      * @param task  task to be scheduled.
190      * @param delay delay in milliseconds before task is to be executed.
191      * @throws IllegalArgumentException if <tt>delay</tt> is negative, or
192      *         <tt>delay + System.currentTimeMillis()</tt> is negative.
193      * @throws IllegalStateException if task was already scheduled or
194      *         cancelled, timer was cancelled, or timer thread terminated.
195      * @throws NullPointerException if {@code task} is null
196      */
schedule(TimerTask task, long delay)197     public void schedule(TimerTask task, long delay) {
198         if (delay < 0)
199             throw new IllegalArgumentException("Negative delay.");
200         sched(task, System.currentTimeMillis()+delay, 0);
201     }
202 
203     /**
204      * Schedules the specified task for execution at the specified time.  If
205      * the time is in the past, the task is scheduled for immediate execution.
206      *
207      * @param task task to be scheduled.
208      * @param time time at which task is to be executed.
209      * @throws IllegalArgumentException if <tt>time.getTime()</tt> is negative.
210      * @throws IllegalStateException if task was already scheduled or
211      *         cancelled, timer was cancelled, or timer thread terminated.
212      * @throws NullPointerException if {@code task} or {@code time} is null
213      */
schedule(TimerTask task, Date time)214     public void schedule(TimerTask task, Date time) {
215         sched(task, time.getTime(), 0);
216     }
217 
218     /**
219      * Schedules the specified task for repeated <i>fixed-delay execution</i>,
220      * beginning after the specified delay.  Subsequent executions take place
221      * at approximately regular intervals separated by the specified period.
222      *
223      * <p>In fixed-delay execution, each execution is scheduled relative to
224      * the actual execution time of the previous execution.  If an execution
225      * is delayed for any reason (such as garbage collection or other
226      * background activity), subsequent executions will be delayed as well.
227      * In the long run, the frequency of execution will generally be slightly
228      * lower than the reciprocal of the specified period (assuming the system
229      * clock underlying <tt>Object.wait(long)</tt> is accurate).
230      *
231      * <p>Fixed-delay execution is appropriate for recurring activities
232      * that require "smoothness."  In other words, it is appropriate for
233      * activities where it is more important to keep the frequency accurate
234      * in the short run than in the long run.  This includes most animation
235      * tasks, such as blinking a cursor at regular intervals.  It also includes
236      * tasks wherein regular activity is performed in response to human
237      * input, such as automatically repeating a character as long as a key
238      * is held down.
239      *
240      * @param task   task to be scheduled.
241      * @param delay  delay in milliseconds before task is to be executed.
242      * @param period time in milliseconds between successive task executions.
243      * @throws IllegalArgumentException if {@code delay < 0}, or
244      *         {@code delay + System.currentTimeMillis() < 0}, or
245      *         {@code period <= 0}
246      * @throws IllegalStateException if task was already scheduled or
247      *         cancelled, timer was cancelled, or timer thread terminated.
248      * @throws NullPointerException if {@code task} is null
249      */
schedule(TimerTask task, long delay, long period)250     public void schedule(TimerTask task, long delay, long period) {
251         if (delay < 0)
252             throw new IllegalArgumentException("Negative delay.");
253         if (period <= 0)
254             throw new IllegalArgumentException("Non-positive period.");
255         sched(task, System.currentTimeMillis()+delay, -period);
256     }
257 
258     /**
259      * Schedules the specified task for repeated <i>fixed-delay execution</i>,
260      * beginning at the specified time. Subsequent executions take place at
261      * approximately regular intervals, separated by the specified period.
262      *
263      * <p>In fixed-delay execution, each execution is scheduled relative to
264      * the actual execution time of the previous execution.  If an execution
265      * is delayed for any reason (such as garbage collection or other
266      * background activity), subsequent executions will be delayed as well.
267      * In the long run, the frequency of execution will generally be slightly
268      * lower than the reciprocal of the specified period (assuming the system
269      * clock underlying <tt>Object.wait(long)</tt> is accurate).  As a
270      * consequence of the above, if the scheduled first time is in the past,
271      * it is scheduled for immediate execution.
272      *
273      * <p>Fixed-delay execution is appropriate for recurring activities
274      * that require "smoothness."  In other words, it is appropriate for
275      * activities where it is more important to keep the frequency accurate
276      * in the short run than in the long run.  This includes most animation
277      * tasks, such as blinking a cursor at regular intervals.  It also includes
278      * tasks wherein regular activity is performed in response to human
279      * input, such as automatically repeating a character as long as a key
280      * is held down.
281      *
282      * @param task   task to be scheduled.
283      * @param firstTime First time at which task is to be executed.
284      * @param period time in milliseconds between successive task executions.
285      * @throws IllegalArgumentException if {@code firstTime.getTime() < 0}, or
286      *         {@code period <= 0}
287      * @throws IllegalStateException if task was already scheduled or
288      *         cancelled, timer was cancelled, or timer thread terminated.
289      * @throws NullPointerException if {@code task} or {@code firstTime} is null
290      */
schedule(TimerTask task, Date firstTime, long period)291     public void schedule(TimerTask task, Date firstTime, long period) {
292         if (period <= 0)
293             throw new IllegalArgumentException("Non-positive period.");
294         sched(task, firstTime.getTime(), -period);
295     }
296 
297     /**
298      * Schedules the specified task for repeated <i>fixed-rate execution</i>,
299      * beginning after the specified delay.  Subsequent executions take place
300      * at approximately regular intervals, separated by the specified period.
301      *
302      * <p>In fixed-rate execution, each execution is scheduled relative to the
303      * scheduled execution time of the initial execution.  If an execution is
304      * delayed for any reason (such as garbage collection or other background
305      * activity), two or more executions will occur in rapid succession to
306      * "catch up."  In the long run, the frequency of execution will be
307      * exactly the reciprocal of the specified period (assuming the system
308      * clock underlying <tt>Object.wait(long)</tt> is accurate).
309      *
310      * <p>Fixed-rate execution is appropriate for recurring activities that
311      * are sensitive to <i>absolute</i> time, such as ringing a chime every
312      * hour on the hour, or running scheduled maintenance every day at a
313      * particular time.  It is also appropriate for recurring activities
314      * where the total time to perform a fixed number of executions is
315      * important, such as a countdown timer that ticks once every second for
316      * ten seconds.  Finally, fixed-rate execution is appropriate for
317      * scheduling multiple repeating timer tasks that must remain synchronized
318      * with respect to one another.
319      *
320      * @param task   task to be scheduled.
321      * @param delay  delay in milliseconds before task is to be executed.
322      * @param period time in milliseconds between successive task executions.
323      * @throws IllegalArgumentException if {@code delay < 0}, or
324      *         {@code delay + System.currentTimeMillis() < 0}, or
325      *         {@code period <= 0}
326      * @throws IllegalStateException if task was already scheduled or
327      *         cancelled, timer was cancelled, or timer thread terminated.
328      * @throws NullPointerException if {@code task} is null
329      */
scheduleAtFixedRate(TimerTask task, long delay, long period)330     public void scheduleAtFixedRate(TimerTask task, long delay, long period) {
331         if (delay < 0)
332             throw new IllegalArgumentException("Negative delay.");
333         if (period <= 0)
334             throw new IllegalArgumentException("Non-positive period.");
335         sched(task, System.currentTimeMillis()+delay, period);
336     }
337 
338     /**
339      * Schedules the specified task for repeated <i>fixed-rate execution</i>,
340      * beginning at the specified time. Subsequent executions take place at
341      * approximately regular intervals, separated by the specified period.
342      *
343      * <p>In fixed-rate execution, each execution is scheduled relative to the
344      * scheduled execution time of the initial execution.  If an execution is
345      * delayed for any reason (such as garbage collection or other background
346      * activity), two or more executions will occur in rapid succession to
347      * "catch up."  In the long run, the frequency of execution will be
348      * exactly the reciprocal of the specified period (assuming the system
349      * clock underlying <tt>Object.wait(long)</tt> is accurate).  As a
350      * consequence of the above, if the scheduled first time is in the past,
351      * then any "missed" executions will be scheduled for immediate "catch up"
352      * execution.
353      *
354      * <p>Fixed-rate execution is appropriate for recurring activities that
355      * are sensitive to <i>absolute</i> time, such as ringing a chime every
356      * hour on the hour, or running scheduled maintenance every day at a
357      * particular time.  It is also appropriate for recurring activities
358      * where the total time to perform a fixed number of executions is
359      * important, such as a countdown timer that ticks once every second for
360      * ten seconds.  Finally, fixed-rate execution is appropriate for
361      * scheduling multiple repeating timer tasks that must remain synchronized
362      * with respect to one another.
363      *
364      * @param task   task to be scheduled.
365      * @param firstTime First time at which task is to be executed.
366      * @param period time in milliseconds between successive task executions.
367      * @throws IllegalArgumentException if {@code firstTime.getTime() < 0} or
368      *         {@code period <= 0}
369      * @throws IllegalStateException if task was already scheduled or
370      *         cancelled, timer was cancelled, or timer thread terminated.
371      * @throws NullPointerException if {@code task} or {@code firstTime} is null
372      */
scheduleAtFixedRate(TimerTask task, Date firstTime, long period)373     public void scheduleAtFixedRate(TimerTask task, Date firstTime,
374                                     long period) {
375         if (period <= 0)
376             throw new IllegalArgumentException("Non-positive period.");
377         sched(task, firstTime.getTime(), period);
378     }
379 
380     /**
381      * Schedule the specified timer task for execution at the specified
382      * time with the specified period, in milliseconds.  If period is
383      * positive, the task is scheduled for repeated execution; if period is
384      * zero, the task is scheduled for one-time execution. Time is specified
385      * in Date.getTime() format.  This method checks timer state, task state,
386      * and initial execution time, but not period.
387      *
388      * @throws IllegalArgumentException if <tt>time</tt> is negative.
389      * @throws IllegalStateException if task was already scheduled or
390      *         cancelled, timer was cancelled, or timer thread terminated.
391      * @throws NullPointerException if {@code task} is null
392      */
sched(TimerTask task, long time, long period)393     private void sched(TimerTask task, long time, long period) {
394         if (time < 0)
395             throw new IllegalArgumentException("Illegal execution time.");
396 
397         // Constrain value of period sufficiently to prevent numeric
398         // overflow while still being effectively infinitely large.
399         if (Math.abs(period) > (Long.MAX_VALUE >> 1))
400             period >>= 1;
401 
402         synchronized(queue) {
403             if (!thread.newTasksMayBeScheduled)
404                 throw new IllegalStateException("Timer already cancelled.");
405 
406             synchronized(task.lock) {
407                 if (task.state != TimerTask.VIRGIN)
408                     throw new IllegalStateException(
409                         "Task already scheduled or cancelled");
410                 task.nextExecutionTime = time;
411                 task.period = period;
412                 task.state = TimerTask.SCHEDULED;
413             }
414 
415             queue.add(task);
416             if (queue.getMin() == task)
417                 queue.notify();
418         }
419     }
420 
421     /**
422      * Terminates this timer, discarding any currently scheduled tasks.
423      * Does not interfere with a currently executing task (if it exists).
424      * Once a timer has been terminated, its execution thread terminates
425      * gracefully, and no more tasks may be scheduled on it.
426      *
427      * <p>Note that calling this method from within the run method of a
428      * timer task that was invoked by this timer absolutely guarantees that
429      * the ongoing task execution is the last task execution that will ever
430      * be performed by this timer.
431      *
432      * <p>This method may be called repeatedly; the second and subsequent
433      * calls have no effect.
434      */
cancel()435     public void cancel() {
436         synchronized(queue) {
437             thread.newTasksMayBeScheduled = false;
438             queue.clear();
439             queue.notify();  // In case queue was already empty.
440         }
441     }
442 
443     /**
444      * Removes all cancelled tasks from this timer's task queue.  <i>Calling
445      * this method has no effect on the behavior of the timer</i>, but
446      * eliminates the references to the cancelled tasks from the queue.
447      * If there are no external references to these tasks, they become
448      * eligible for garbage collection.
449      *
450      * <p>Most programs will have no need to call this method.
451      * It is designed for use by the rare application that cancels a large
452      * number of tasks.  Calling this method trades time for space: the
453      * runtime of the method may be proportional to n + c log n, where n
454      * is the number of tasks in the queue and c is the number of cancelled
455      * tasks.
456      *
457      * <p>Note that it is permissible to call this method from within a
458      * a task scheduled on this timer.
459      *
460      * @return the number of tasks removed from the queue.
461      * @since 1.5
462      */
purge()463      public int purge() {
464          int result = 0;
465 
466          synchronized(queue) {
467              for (int i = queue.size(); i > 0; i--) {
468                  if (queue.get(i).state == TimerTask.CANCELLED) {
469                      queue.quickRemove(i);
470                      result++;
471                  }
472              }
473 
474              if (result != 0)
475                  queue.heapify();
476          }
477 
478          return result;
479      }
480 }
481 
482 /**
483  * This "helper class" implements the timer's task execution thread, which
484  * waits for tasks on the timer queue, executions them when they fire,
485  * reschedules repeating tasks, and removes cancelled tasks and spent
486  * non-repeating tasks from the queue.
487  */
488 class TimerThread extends Thread {
489     /**
490      * This flag is set to false by the reaper to inform us that there
491      * are no more live references to our Timer object.  Once this flag
492      * is true and there are no more tasks in our queue, there is no
493      * work left for us to do, so we terminate gracefully.  Note that
494      * this field is protected by queue's monitor!
495      */
496     boolean newTasksMayBeScheduled = true;
497 
498     /**
499      * Our Timer's queue.  We store this reference in preference to
500      * a reference to the Timer so the reference graph remains acyclic.
501      * Otherwise, the Timer would never be garbage-collected and this
502      * thread would never go away.
503      */
504     private TaskQueue queue;
505 
TimerThread(TaskQueue queue)506     TimerThread(TaskQueue queue) {
507         this.queue = queue;
508     }
509 
run()510     public void run() {
511         try {
512             mainLoop();
513         } finally {
514             // Someone killed this Thread, behave as if Timer cancelled
515             synchronized(queue) {
516                 newTasksMayBeScheduled = false;
517                 queue.clear();  // Eliminate obsolete references
518             }
519         }
520     }
521 
522     /**
523      * The main timer loop.  (See class comment.)
524      */
mainLoop()525     private void mainLoop() {
526         while (true) {
527             try {
528                 TimerTask task;
529                 boolean taskFired;
530                 synchronized(queue) {
531                     // Wait for queue to become non-empty
532                     while (queue.isEmpty() && newTasksMayBeScheduled)
533                         queue.wait();
534                     if (queue.isEmpty())
535                         break; // Queue is empty and will forever remain; die
536 
537                     // Queue nonempty; look at first evt and do the right thing
538                     long currentTime, executionTime;
539                     task = queue.getMin();
540                     synchronized(task.lock) {
541                         if (task.state == TimerTask.CANCELLED) {
542                             queue.removeMin();
543                             continue;  // No action required, poll queue again
544                         }
545                         currentTime = System.currentTimeMillis();
546                         executionTime = task.nextExecutionTime;
547                         if (taskFired = (executionTime<=currentTime)) {
548                             if (task.period == 0) { // Non-repeating, remove
549                                 queue.removeMin();
550                                 task.state = TimerTask.EXECUTED;
551                             } else { // Repeating task, reschedule
552                                 queue.rescheduleMin(
553                                   task.period<0 ? currentTime   - task.period
554                                                 : executionTime + task.period);
555                             }
556                         }
557                     }
558                     if (!taskFired) // Task hasn't yet fired; wait
559                         queue.wait(executionTime - currentTime);
560                 }
561                 if (taskFired)  // Task fired; run it, holding no locks
562                     task.run();
563             } catch(InterruptedException e) {
564             }
565         }
566     }
567 }
568 
569 /**
570  * This class represents a timer task queue: a priority queue of TimerTasks,
571  * ordered on nextExecutionTime.  Each Timer object has one of these, which it
572  * shares with its TimerThread.  Internally this class uses a heap, which
573  * offers log(n) performance for the add, removeMin and rescheduleMin
574  * operations, and constant time performance for the getMin operation.
575  */
576 class TaskQueue {
577     /**
578      * Priority queue represented as a balanced binary heap: the two children
579      * of queue[n] are queue[2*n] and queue[2*n+1].  The priority queue is
580      * ordered on the nextExecutionTime field: The TimerTask with the lowest
581      * nextExecutionTime is in queue[1] (assuming the queue is nonempty).  For
582      * each node n in the heap, and each descendant of n, d,
583      * n.nextExecutionTime <= d.nextExecutionTime.
584      */
585     private TimerTask[] queue = new TimerTask[128];
586 
587     /**
588      * The number of tasks in the priority queue.  (The tasks are stored in
589      * queue[1] up to queue[size]).
590      */
591     private int size = 0;
592 
593     /**
594      * Returns the number of tasks currently on the queue.
595      */
596     int size() {
597         return size;
598     }
599 
600     /**
601      * Adds a new task to the priority queue.
602      */
603     void add(TimerTask task) {
604         // Grow backing store if necessary
605         if (size + 1 == queue.length)
606             queue = Arrays.copyOf(queue, 2*queue.length);
607 
608         queue[++size] = task;
609         fixUp(size);
610     }
611 
612     /**
613      * Return the "head task" of the priority queue.  (The head task is an
614      * task with the lowest nextExecutionTime.)
615      */
616     TimerTask getMin() {
617         return queue[1];
618     }
619 
620     /**
621      * Return the ith task in the priority queue, where i ranges from 1 (the
622      * head task, which is returned by getMin) to the number of tasks on the
623      * queue, inclusive.
624      */
625     TimerTask get(int i) {
626         return queue[i];
627     }
628 
629     /**
630      * Remove the head task from the priority queue.
631      */
632     void removeMin() {
633         queue[1] = queue[size];
634         queue[size--] = null;  // Drop extra reference to prevent memory leak
635         fixDown(1);
636     }
637 
638     /**
639      * Removes the ith element from queue without regard for maintaining
640      * the heap invariant.  Recall that queue is one-based, so
641      * 1 <= i <= size.
642      */
643     void quickRemove(int i) {
644         assert i <= size;
645 
646         queue[i] = queue[size];
647         queue[size--] = null;  // Drop extra ref to prevent memory leak
648     }
649 
650     /**
651      * Sets the nextExecutionTime associated with the head task to the
652      * specified value, and adjusts priority queue accordingly.
653      */
654     void rescheduleMin(long newTime) {
655         queue[1].nextExecutionTime = newTime;
656         fixDown(1);
657     }
658 
659     /**
660      * Returns true if the priority queue contains no elements.
661      */
662     boolean isEmpty() {
663         return size==0;
664     }
665 
666     /**
667      * Removes all elements from the priority queue.
668      */
669     void clear() {
670         // Null out task references to prevent memory leak
671         for (int i=1; i<=size; i++)
672             queue[i] = null;
673 
674         size = 0;
675     }
676 
677     /**
678      * Establishes the heap invariant (described above) assuming the heap
679      * satisfies the invariant except possibly for the leaf-node indexed by k
680      * (which may have a nextExecutionTime less than its parent's).
681      *
682      * This method functions by "promoting" queue[k] up the hierarchy
683      * (by swapping it with its parent) repeatedly until queue[k]'s
684      * nextExecutionTime is greater than or equal to that of its parent.
685      */
686     private void fixUp(int k) {
687         while (k > 1) {
688             int j = k >> 1;
689             if (queue[j].nextExecutionTime <= queue[k].nextExecutionTime)
690                 break;
691             TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
692             k = j;
693         }
694     }
695 
696     /**
697      * Establishes the heap invariant (described above) in the subtree
698      * rooted at k, which is assumed to satisfy the heap invariant except
699      * possibly for node k itself (which may have a nextExecutionTime greater
700      * than its children's).
701      *
702      * This method functions by "demoting" queue[k] down the hierarchy
703      * (by swapping it with its smaller child) repeatedly until queue[k]'s
704      * nextExecutionTime is less than or equal to those of its children.
705      */
706     private void fixDown(int k) {
707         int j;
708         while ((j = k << 1) <= size && j > 0) {
709             if (j < size &&
710                 queue[j].nextExecutionTime > queue[j+1].nextExecutionTime)
711                 j++; // j indexes smallest kid
712             if (queue[k].nextExecutionTime <= queue[j].nextExecutionTime)
713                 break;
714             TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
715             k = j;
716         }
717     }
718 
719     /**
720      * Establishes the heap invariant (described above) in the entire tree,
721      * assuming nothing about the order of the elements prior to the call.
722      */
723     void heapify() {
724         for (int i = size/2; i >= 1; i--)
725             fixDown(i);
726     }
727 }
728