1 /* 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package sun.misc; 27 28 import sun.misc.FloatConsts; 29 import sun.misc.DoubleConsts; 30 31 /** 32 * The class {@code FpUtils} contains static utility methods for 33 * manipulating and inspecting {@code float} and 34 * {@code double} floating-point numbers. These methods include 35 * functionality recommended or required by the IEEE 754 36 * floating-point standard. 37 * 38 * @author Joseph D. Darcy 39 */ 40 41 public class FpUtils { 42 /* 43 * The methods in this class are reasonably implemented using 44 * direct or indirect bit-level manipulation of floating-point 45 * values. However, having access to the IEEE 754 recommended 46 * functions would obviate the need for most programmers to engage 47 * in floating-point bit-twiddling. 48 * 49 * An IEEE 754 number has three fields, from most significant bit 50 * to to least significant, sign, exponent, and significand. 51 * 52 * msb lsb 53 * [sign|exponent| fractional_significand] 54 * 55 * Using some encoding cleverness, explained below, the high order 56 * bit of the logical significand does not need to be explicitly 57 * stored, thus "fractional_significand" instead of simply 58 * "significand" in the figure above. 59 * 60 * For finite normal numbers, the numerical value encoded is 61 * 62 * (-1)^sign * 2^(exponent)*(1.fractional_significand) 63 * 64 * Most finite floating-point numbers are normalized; the exponent 65 * value is reduced until the leading significand bit is 1. 66 * Therefore, the leading 1 is redundant and is not explicitly 67 * stored. If a numerical value is so small it cannot be 68 * normalized, it has a subnormal representation. Subnormal 69 * numbers don't have a leading 1 in their significand; subnormals 70 * are encoding using a special exponent value. In other words, 71 * the high-order bit of the logical significand can be elided in 72 * from the representation in either case since the bit's value is 73 * implicit from the exponent value. 74 * 75 * The exponent field uses a biased representation; if the bits of 76 * the exponent are interpreted as a unsigned integer E, the 77 * exponent represented is E - E_bias where E_bias depends on the 78 * floating-point format. E can range between E_min and E_max, 79 * constants which depend on the floating-point format. E_min and 80 * E_max are -126 and +127 for float, -1022 and +1023 for double. 81 * 82 * The 32-bit float format has 1 sign bit, 8 exponent bits, and 23 83 * bits for the significand (which is logically 24 bits wide 84 * because of the implicit bit). The 64-bit double format has 1 85 * sign bit, 11 exponent bits, and 52 bits for the significand 86 * (logically 53 bits). 87 * 88 * Subnormal numbers and zero have the special exponent value 89 * E_min -1; the numerical value represented by a subnormal is: 90 * 91 * (-1)^sign * 2^(E_min)*(0.fractional_significand) 92 * 93 * Zero is represented by all zero bits in the exponent and all 94 * zero bits in the significand; zero can have either sign. 95 * 96 * Infinity and NaN are encoded using the exponent value E_max + 97 * 1. Signed infinities have all significand bits zero; NaNs have 98 * at least one non-zero significand bit. 99 * 100 * The details of IEEE 754 floating-point encoding will be used in 101 * the methods below without further comment. For further 102 * exposition on IEEE 754 numbers, see "IEEE Standard for Binary 103 * Floating-Point Arithmetic" ANSI/IEEE Std 754-1985 or William 104 * Kahan's "Lecture Notes on the Status of IEEE Standard 754 for 105 * Binary Floating-Point Arithmetic", 106 * http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps. 107 * 108 * Many of this class's methods are members of the set of IEEE 754 109 * recommended functions or similar functions recommended or 110 * required by IEEE 754R. Discussion of various implementation 111 * techniques for these functions have occurred in: 112 * 113 * W.J. Cody and Jerome T. Coonen, "Algorithm 772 Functions to 114 * Support the IEEE Standard for Binary Floating-Point 115 * Arithmetic," ACM Transactions on Mathematical Software, 116 * vol. 19, no. 4, December 1993, pp. 443-451. 117 * 118 * Joseph D. Darcy, "Writing robust IEEE recommended functions in 119 * ``100% Pure Java''(TM)," University of California, Berkeley 120 * technical report UCB//CSD-98-1009. 121 */ 122 123 /** 124 * Don't let anyone instantiate this class. 125 */ FpUtils()126 private FpUtils() {} 127 128 // Helper Methods 129 130 // The following helper methods are used in the implementation of 131 // the public recommended functions; they generally omit certain 132 // tests for exception cases. 133 134 /** 135 * Returns unbiased exponent of a {@code double}. 136 * @deprecated Use Math.getExponent. 137 */ 138 @Deprecated getExponent(double d)139 public static int getExponent(double d){ 140 return Math.getExponent(d); 141 } 142 143 /** 144 * Returns unbiased exponent of a {@code float}. 145 * @deprecated Use Math.getExponent. 146 */ 147 @Deprecated getExponent(float f)148 public static int getExponent(float f){ 149 return Math.getExponent(f); 150 } 151 152 153 /** 154 * Returns the first floating-point argument with the sign of the 155 * second floating-point argument. Note that unlike the {@link 156 * FpUtils#copySign(double, double) copySign} method, this method 157 * does not require NaN {@code sign} arguments to be treated 158 * as positive values; implementations are permitted to treat some 159 * NaN arguments as positive and other NaN arguments as negative 160 * to allow greater performance. 161 * 162 * @param magnitude the parameter providing the magnitude of the result 163 * @param sign the parameter providing the sign of the result 164 * @return a value with the magnitude of {@code magnitude} 165 * and the sign of {@code sign}. 166 * @author Joseph D. Darcy 167 * @deprecated Use Math.copySign. 168 */ 169 @Deprecated rawCopySign(double magnitude, double sign)170 public static double rawCopySign(double magnitude, double sign) { 171 return Math.copySign(magnitude, sign); 172 } 173 174 /** 175 * Returns the first floating-point argument with the sign of the 176 * second floating-point argument. Note that unlike the {@link 177 * FpUtils#copySign(float, float) copySign} method, this method 178 * does not require NaN {@code sign} arguments to be treated 179 * as positive values; implementations are permitted to treat some 180 * NaN arguments as positive and other NaN arguments as negative 181 * to allow greater performance. 182 * 183 * @param magnitude the parameter providing the magnitude of the result 184 * @param sign the parameter providing the sign of the result 185 * @return a value with the magnitude of {@code magnitude} 186 * and the sign of {@code sign}. 187 * @author Joseph D. Darcy 188 * @deprecated Use Math.copySign. 189 */ 190 @Deprecated rawCopySign(float magnitude, float sign)191 public static float rawCopySign(float magnitude, float sign) { 192 return Math.copySign(magnitude, sign); 193 } 194 195 /* ***************************************************************** */ 196 197 /** 198 * Returns {@code true} if the argument is a finite 199 * floating-point value; returns {@code false} otherwise (for 200 * NaN and infinity arguments). 201 * 202 * @param d the {@code double} value to be tested 203 * @return {@code true} if the argument is a finite 204 * floating-point value, {@code false} otherwise. 205 * @deprecated Use Double.isFinite. 206 */ 207 @Deprecated isFinite(double d)208 public static boolean isFinite(double d) { 209 return Double.isFinite(d); 210 } 211 212 /** 213 * Returns {@code true} if the argument is a finite 214 * floating-point value; returns {@code false} otherwise (for 215 * NaN and infinity arguments). 216 * 217 * @param f the {@code float} value to be tested 218 * @return {@code true} if the argument is a finite 219 * floating-point value, {@code false} otherwise. 220 * @deprecated Use Float.isFinite. 221 */ 222 @Deprecated isFinite(float f)223 public static boolean isFinite(float f) { 224 return Float.isFinite(f); 225 } 226 227 /** 228 * Returns {@code true} if the specified number is infinitely 229 * large in magnitude, {@code false} otherwise. 230 * 231 * <p>Note that this method is equivalent to the {@link 232 * Double#isInfinite(double) Double.isInfinite} method; the 233 * functionality is included in this class for convenience. 234 * 235 * @param d the value to be tested. 236 * @return {@code true} if the value of the argument is positive 237 * infinity or negative infinity; {@code false} otherwise. 238 */ isInfinite(double d)239 public static boolean isInfinite(double d) { 240 return Double.isInfinite(d); 241 } 242 243 /** 244 * Returns {@code true} if the specified number is infinitely 245 * large in magnitude, {@code false} otherwise. 246 * 247 * <p>Note that this method is equivalent to the {@link 248 * Float#isInfinite(float) Float.isInfinite} method; the 249 * functionality is included in this class for convenience. 250 * 251 * @param f the value to be tested. 252 * @return {@code true} if the argument is positive infinity or 253 * negative infinity; {@code false} otherwise. 254 */ isInfinite(float f)255 public static boolean isInfinite(float f) { 256 return Float.isInfinite(f); 257 } 258 259 /** 260 * Returns {@code true} if the specified number is a 261 * Not-a-Number (NaN) value, {@code false} otherwise. 262 * 263 * <p>Note that this method is equivalent to the {@link 264 * Double#isNaN(double) Double.isNaN} method; the functionality is 265 * included in this class for convenience. 266 * 267 * @param d the value to be tested. 268 * @return {@code true} if the value of the argument is NaN; 269 * {@code false} otherwise. 270 */ isNaN(double d)271 public static boolean isNaN(double d) { 272 return Double.isNaN(d); 273 } 274 275 /** 276 * Returns {@code true} if the specified number is a 277 * Not-a-Number (NaN) value, {@code false} otherwise. 278 * 279 * <p>Note that this method is equivalent to the {@link 280 * Float#isNaN(float) Float.isNaN} method; the functionality is 281 * included in this class for convenience. 282 * 283 * @param f the value to be tested. 284 * @return {@code true} if the argument is NaN; 285 * {@code false} otherwise. 286 */ isNaN(float f)287 public static boolean isNaN(float f) { 288 return Float.isNaN(f); 289 } 290 291 /** 292 * Returns {@code true} if the unordered relation holds 293 * between the two arguments. When two floating-point values are 294 * unordered, one value is neither less than, equal to, nor 295 * greater than the other. For the unordered relation to be true, 296 * at least one argument must be a {@code NaN}. 297 * 298 * @param arg1 the first argument 299 * @param arg2 the second argument 300 * @return {@code true} if at least one argument is a NaN, 301 * {@code false} otherwise. 302 */ isUnordered(double arg1, double arg2)303 public static boolean isUnordered(double arg1, double arg2) { 304 return isNaN(arg1) || isNaN(arg2); 305 } 306 307 /** 308 * Returns {@code true} if the unordered relation holds 309 * between the two arguments. When two floating-point values are 310 * unordered, one value is neither less than, equal to, nor 311 * greater than the other. For the unordered relation to be true, 312 * at least one argument must be a {@code NaN}. 313 * 314 * @param arg1 the first argument 315 * @param arg2 the second argument 316 * @return {@code true} if at least one argument is a NaN, 317 * {@code false} otherwise. 318 */ isUnordered(float arg1, float arg2)319 public static boolean isUnordered(float arg1, float arg2) { 320 return isNaN(arg1) || isNaN(arg2); 321 } 322 323 /** 324 * Returns unbiased exponent of a {@code double}; for 325 * subnormal values, the number is treated as if it were 326 * normalized. That is for all finite, non-zero, positive numbers 327 * <i>x</i>, <code>scalb(<i>x</i>, -ilogb(<i>x</i>))</code> is 328 * always in the range [1, 2). 329 * <p> 330 * Special cases: 331 * <ul> 332 * <li> If the argument is NaN, then the result is 2<sup>30</sup>. 333 * <li> If the argument is infinite, then the result is 2<sup>28</sup>. 334 * <li> If the argument is zero, then the result is -(2<sup>28</sup>). 335 * </ul> 336 * 337 * @param d floating-point number whose exponent is to be extracted 338 * @return unbiased exponent of the argument. 339 * @author Joseph D. Darcy 340 */ ilogb(double d)341 public static int ilogb(double d) { 342 int exponent = getExponent(d); 343 344 switch (exponent) { 345 case DoubleConsts.MAX_EXPONENT+1: // NaN or infinity 346 if( isNaN(d) ) 347 return (1<<30); // 2^30 348 else // infinite value 349 return (1<<28); // 2^28 350 351 case DoubleConsts.MIN_EXPONENT-1: // zero or subnormal 352 if(d == 0.0) { 353 return -(1<<28); // -(2^28) 354 } 355 else { 356 long transducer = Double.doubleToRawLongBits(d); 357 358 /* 359 * To avoid causing slow arithmetic on subnormals, 360 * the scaling to determine when d's significand 361 * is normalized is done in integer arithmetic. 362 * (there must be at least one "1" bit in the 363 * significand since zero has been screened out. 364 */ 365 366 // isolate significand bits 367 transducer &= DoubleConsts.SIGNIF_BIT_MASK; 368 assert(transducer != 0L); 369 370 // This loop is simple and functional. We might be 371 // able to do something more clever that was faster; 372 // e.g. number of leading zero detection on 373 // (transducer << (# exponent and sign bits). 374 while (transducer < 375 (1L << (DoubleConsts.SIGNIFICAND_WIDTH - 1))) { 376 transducer *= 2; 377 exponent--; 378 } 379 exponent++; 380 assert( exponent >= 381 DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1) && 382 exponent < DoubleConsts.MIN_EXPONENT); 383 return exponent; 384 } 385 386 default: 387 assert( exponent >= DoubleConsts.MIN_EXPONENT && 388 exponent <= DoubleConsts.MAX_EXPONENT); 389 return exponent; 390 } 391 } 392 393 /** 394 * Returns unbiased exponent of a {@code float}; for 395 * subnormal values, the number is treated as if it were 396 * normalized. That is for all finite, non-zero, positive numbers 397 * <i>x</i>, <code>scalb(<i>x</i>, -ilogb(<i>x</i>))</code> is 398 * always in the range [1, 2). 399 * <p> 400 * Special cases: 401 * <ul> 402 * <li> If the argument is NaN, then the result is 2<sup>30</sup>. 403 * <li> If the argument is infinite, then the result is 2<sup>28</sup>. 404 * <li> If the argument is zero, then the result is -(2<sup>28</sup>). 405 * </ul> 406 * 407 * @param f floating-point number whose exponent is to be extracted 408 * @return unbiased exponent of the argument. 409 * @author Joseph D. Darcy 410 */ ilogb(float f)411 public static int ilogb(float f) { 412 int exponent = getExponent(f); 413 414 switch (exponent) { 415 case FloatConsts.MAX_EXPONENT+1: // NaN or infinity 416 if( isNaN(f) ) 417 return (1<<30); // 2^30 418 else // infinite value 419 return (1<<28); // 2^28 420 421 case FloatConsts.MIN_EXPONENT-1: // zero or subnormal 422 if(f == 0.0f) { 423 return -(1<<28); // -(2^28) 424 } 425 else { 426 int transducer = Float.floatToRawIntBits(f); 427 428 /* 429 * To avoid causing slow arithmetic on subnormals, 430 * the scaling to determine when f's significand 431 * is normalized is done in integer arithmetic. 432 * (there must be at least one "1" bit in the 433 * significand since zero has been screened out. 434 */ 435 436 // isolate significand bits 437 transducer &= FloatConsts.SIGNIF_BIT_MASK; 438 assert(transducer != 0); 439 440 // This loop is simple and functional. We might be 441 // able to do something more clever that was faster; 442 // e.g. number of leading zero detection on 443 // (transducer << (# exponent and sign bits). 444 while (transducer < 445 (1 << (FloatConsts.SIGNIFICAND_WIDTH - 1))) { 446 transducer *= 2; 447 exponent--; 448 } 449 exponent++; 450 assert( exponent >= 451 FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1) && 452 exponent < FloatConsts.MIN_EXPONENT); 453 return exponent; 454 } 455 456 default: 457 assert( exponent >= FloatConsts.MIN_EXPONENT && 458 exponent <= FloatConsts.MAX_EXPONENT); 459 return exponent; 460 } 461 } 462 463 464 /* 465 * The scalb operation should be reasonably fast; however, there 466 * are tradeoffs in writing a method to minimize the worst case 467 * performance and writing a method to minimize the time for 468 * expected common inputs. Some processors operate very slowly on 469 * subnormal operands, taking hundreds or thousands of cycles for 470 * one floating-point add or multiply as opposed to, say, four 471 * cycles for normal operands. For processors with very slow 472 * subnormal execution, scalb would be fastest if written entirely 473 * with integer operations; in other words, scalb would need to 474 * include the logic of performing correct rounding of subnormal 475 * values. This could be reasonably done in at most a few hundred 476 * cycles. However, this approach may penalize normal operations 477 * since at least the exponent of the floating-point argument must 478 * be examined. 479 * 480 * The approach taken in this implementation is a compromise. 481 * Floating-point multiplication is used to do most of the work; 482 * but knowingly multiplying by a subnormal scaling factor is 483 * avoided. However, the floating-point argument is not examined 484 * to see whether or not it is subnormal since subnormal inputs 485 * are assumed to be rare. At most three multiplies are needed to 486 * scale from the largest to smallest exponent ranges (scaling 487 * down, at most two multiplies are needed if subnormal scaling 488 * factors are allowed). However, in this implementation an 489 * expensive integer remainder operation is avoided at the cost of 490 * requiring five floating-point multiplies in the worst case, 491 * which should still be a performance win. 492 * 493 * If scaling of entire arrays is a concern, it would probably be 494 * more efficient to provide a double[] scalb(double[], int) 495 * version of scalb to avoid having to recompute the needed 496 * scaling factors for each floating-point value. 497 */ 498 499 /** 500 * Return {@code d} × 501 * 2<sup>{@code scale_factor}</sup> rounded as if performed 502 * by a single correctly rounded floating-point multiply to a 503 * member of the double value set. See section 4.2.3 of 504 * <cite>The Java™ Language Specification</cite> 505 * for a discussion of floating-point 506 * value sets. If the exponent of the result is between the 507 * {@code double}'s minimum exponent and maximum exponent, 508 * the answer is calculated exactly. If the exponent of the 509 * result would be larger than {@code doubles}'s maximum 510 * exponent, an infinity is returned. Note that if the result is 511 * subnormal, precision may be lost; that is, when {@code scalb(x, 512 * n)} is subnormal, {@code scalb(scalb(x, n), -n)} may 513 * not equal <i>x</i>. When the result is non-NaN, the result has 514 * the same sign as {@code d}. 515 * 516 *<p> 517 * Special cases: 518 * <ul> 519 * <li> If the first argument is NaN, NaN is returned. 520 * <li> If the first argument is infinite, then an infinity of the 521 * same sign is returned. 522 * <li> If the first argument is zero, then a zero of the same 523 * sign is returned. 524 * </ul> 525 * 526 * @param d number to be scaled by a power of two. 527 * @param scale_factor power of 2 used to scale {@code d} 528 * @return {@code d * }2<sup>{@code scale_factor}</sup> 529 * @author Joseph D. Darcy 530 * @deprecated Use Math.scalb. 531 */ 532 @Deprecated scalb(double d, int scale_factor)533 public static double scalb(double d, int scale_factor) { 534 return Math.scalb(d, scale_factor); 535 } 536 537 /** 538 * Return {@code f} × 539 * 2<sup>{@code scale_factor}</sup> rounded as if performed 540 * by a single correctly rounded floating-point multiply to a 541 * member of the float value set. See section 4.2.3 of 542 * <cite>The Java™ Language Specification</cite> 543 * for a discussion of floating-point 544 * value sets. If the exponent of the result is between the 545 * {@code float}'s minimum exponent and maximum exponent, the 546 * answer is calculated exactly. If the exponent of the result 547 * would be larger than {@code float}'s maximum exponent, an 548 * infinity is returned. Note that if the result is subnormal, 549 * precision may be lost; that is, when {@code scalb(x, n)} 550 * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal 551 * <i>x</i>. When the result is non-NaN, the result has the same 552 * sign as {@code f}. 553 * 554 *<p> 555 * Special cases: 556 * <ul> 557 * <li> If the first argument is NaN, NaN is returned. 558 * <li> If the first argument is infinite, then an infinity of the 559 * same sign is returned. 560 * <li> If the first argument is zero, then a zero of the same 561 * sign is returned. 562 * </ul> 563 * 564 * @param f number to be scaled by a power of two. 565 * @param scale_factor power of 2 used to scale {@code f} 566 * @return {@code f * }2<sup>{@code scale_factor}</sup> 567 * @author Joseph D. Darcy 568 * @deprecated Use Math.scalb. 569 */ 570 @Deprecated scalb(float f, int scale_factor)571 public static float scalb(float f, int scale_factor) { 572 return Math.scalb(f, scale_factor); 573 } 574 575 /** 576 * Returns the floating-point number adjacent to the first 577 * argument in the direction of the second argument. If both 578 * arguments compare as equal the second argument is returned. 579 * 580 * <p> 581 * Special cases: 582 * <ul> 583 * <li> If either argument is a NaN, then NaN is returned. 584 * 585 * <li> If both arguments are signed zeros, {@code direction} 586 * is returned unchanged (as implied by the requirement of 587 * returning the second argument if the arguments compare as 588 * equal). 589 * 590 * <li> If {@code start} is 591 * ±{@code Double.MIN_VALUE} and {@code direction} 592 * has a value such that the result should have a smaller 593 * magnitude, then a zero with the same sign as {@code start} 594 * is returned. 595 * 596 * <li> If {@code start} is infinite and 597 * {@code direction} has a value such that the result should 598 * have a smaller magnitude, {@code Double.MAX_VALUE} with the 599 * same sign as {@code start} is returned. 600 * 601 * <li> If {@code start} is equal to ± 602 * {@code Double.MAX_VALUE} and {@code direction} has a 603 * value such that the result should have a larger magnitude, an 604 * infinity with same sign as {@code start} is returned. 605 * </ul> 606 * 607 * @param start starting floating-point value 608 * @param direction value indicating which of 609 * {@code start}'s neighbors or {@code start} should 610 * be returned 611 * @return The floating-point number adjacent to {@code start} in the 612 * direction of {@code direction}. 613 * @author Joseph D. Darcy 614 * @deprecated Use Math.nextAfter 615 */ 616 @Deprecated nextAfter(double start, double direction)617 public static double nextAfter(double start, double direction) { 618 return Math.nextAfter(start, direction); 619 } 620 621 /** 622 * Returns the floating-point number adjacent to the first 623 * argument in the direction of the second argument. If both 624 * arguments compare as equal, the second argument is returned. 625 * 626 * <p> 627 * Special cases: 628 * <ul> 629 * <li> If either argument is a NaN, then NaN is returned. 630 * 631 * <li> If both arguments are signed zeros, a {@code float} 632 * zero with the same sign as {@code direction} is returned 633 * (as implied by the requirement of returning the second argument 634 * if the arguments compare as equal). 635 * 636 * <li> If {@code start} is 637 * ±{@code Float.MIN_VALUE} and {@code direction} 638 * has a value such that the result should have a smaller 639 * magnitude, then a zero with the same sign as {@code start} 640 * is returned. 641 * 642 * <li> If {@code start} is infinite and 643 * {@code direction} has a value such that the result should 644 * have a smaller magnitude, {@code Float.MAX_VALUE} with the 645 * same sign as {@code start} is returned. 646 * 647 * <li> If {@code start} is equal to ± 648 * {@code Float.MAX_VALUE} and {@code direction} has a 649 * value such that the result should have a larger magnitude, an 650 * infinity with same sign as {@code start} is returned. 651 * </ul> 652 * 653 * @param start starting floating-point value 654 * @param direction value indicating which of 655 * {@code start}'s neighbors or {@code start} should 656 * be returned 657 * @return The floating-point number adjacent to {@code start} in the 658 * direction of {@code direction}. 659 * @author Joseph D. Darcy 660 * @deprecated Use Math.nextAfter. 661 */ 662 @Deprecated nextAfter(float start, double direction)663 public static float nextAfter(float start, double direction) { 664 return Math.nextAfter(start, direction); 665 } 666 667 /** 668 * Returns the floating-point value adjacent to {@code d} in 669 * the direction of positive infinity. This method is 670 * semantically equivalent to {@code nextAfter(d, 671 * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} 672 * implementation may run faster than its equivalent 673 * {@code nextAfter} call. 674 * 675 * <p>Special Cases: 676 * <ul> 677 * <li> If the argument is NaN, the result is NaN. 678 * 679 * <li> If the argument is positive infinity, the result is 680 * positive infinity. 681 * 682 * <li> If the argument is zero, the result is 683 * {@code Double.MIN_VALUE} 684 * 685 * </ul> 686 * 687 * @param d starting floating-point value 688 * @return The adjacent floating-point value closer to positive 689 * infinity. 690 * @author Joseph D. Darcy 691 * @deprecated use Math.nextUp. 692 */ 693 @Deprecated nextUp(double d)694 public static double nextUp(double d) { 695 return Math.nextUp(d); 696 } 697 698 /** 699 * Returns the floating-point value adjacent to {@code f} in 700 * the direction of positive infinity. This method is 701 * semantically equivalent to {@code nextAfter(f, 702 * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} 703 * implementation may run faster than its equivalent 704 * {@code nextAfter} call. 705 * 706 * <p>Special Cases: 707 * <ul> 708 * <li> If the argument is NaN, the result is NaN. 709 * 710 * <li> If the argument is positive infinity, the result is 711 * positive infinity. 712 * 713 * <li> If the argument is zero, the result is 714 * {@code Float.MIN_VALUE} 715 * 716 * </ul> 717 * 718 * @param f starting floating-point value 719 * @return The adjacent floating-point value closer to positive 720 * infinity. 721 * @author Joseph D. Darcy 722 * @deprecated Use Math.nextUp. 723 */ 724 @Deprecated nextUp(float f)725 public static float nextUp(float f) { 726 return Math.nextUp(f); 727 } 728 729 /** 730 * Returns the floating-point value adjacent to {@code d} in 731 * the direction of negative infinity. This method is 732 * semantically equivalent to {@code nextAfter(d, 733 * Double.NEGATIVE_INFINITY)}; however, a 734 * {@code nextDown} implementation may run faster than its 735 * equivalent {@code nextAfter} call. 736 * 737 * <p>Special Cases: 738 * <ul> 739 * <li> If the argument is NaN, the result is NaN. 740 * 741 * <li> If the argument is negative infinity, the result is 742 * negative infinity. 743 * 744 * <li> If the argument is zero, the result is 745 * {@code -Double.MIN_VALUE} 746 * 747 * </ul> 748 * 749 * @param d starting floating-point value 750 * @return The adjacent floating-point value closer to negative 751 * infinity. 752 * @author Joseph D. Darcy 753 * @deprecated Use Math.nextDown. 754 */ 755 @Deprecated nextDown(double d)756 public static double nextDown(double d) { 757 return Math.nextDown(d); 758 } 759 760 /** 761 * Returns the floating-point value adjacent to {@code f} in 762 * the direction of negative infinity. This method is 763 * semantically equivalent to {@code nextAfter(f, 764 * Float.NEGATIVE_INFINITY)}; however, a 765 * {@code nextDown} implementation may run faster than its 766 * equivalent {@code nextAfter} call. 767 * 768 * <p>Special Cases: 769 * <ul> 770 * <li> If the argument is NaN, the result is NaN. 771 * 772 * <li> If the argument is negative infinity, the result is 773 * negative infinity. 774 * 775 * <li> If the argument is zero, the result is 776 * {@code -Float.MIN_VALUE} 777 * 778 * </ul> 779 * 780 * @param f starting floating-point value 781 * @return The adjacent floating-point value closer to negative 782 * infinity. 783 * @author Joseph D. Darcy 784 * @deprecated Use Math.nextDown. 785 */ 786 @Deprecated nextDown(float f)787 public static double nextDown(float f) { 788 return Math.nextDown(f); 789 } 790 791 /** 792 * Returns the first floating-point argument with the sign of the 793 * second floating-point argument. For this method, a NaN 794 * {@code sign} argument is always treated as if it were 795 * positive. 796 * 797 * @param magnitude the parameter providing the magnitude of the result 798 * @param sign the parameter providing the sign of the result 799 * @return a value with the magnitude of {@code magnitude} 800 * and the sign of {@code sign}. 801 * @author Joseph D. Darcy 802 * @since 1.5 803 * @deprecated Use StrictMath.copySign. 804 */ 805 @Deprecated copySign(double magnitude, double sign)806 public static double copySign(double magnitude, double sign) { 807 return StrictMath.copySign(magnitude, sign); 808 } 809 810 /** 811 * Returns the first floating-point argument with the sign of the 812 * second floating-point argument. For this method, a NaN 813 * {@code sign} argument is always treated as if it were 814 * positive. 815 * 816 * @param magnitude the parameter providing the magnitude of the result 817 * @param sign the parameter providing the sign of the result 818 * @return a value with the magnitude of {@code magnitude} 819 * and the sign of {@code sign}. 820 * @author Joseph D. Darcy 821 * @deprecated Use StrictMath.copySign. 822 */ 823 @Deprecated copySign(float magnitude, float sign)824 public static float copySign(float magnitude, float sign) { 825 return StrictMath.copySign(magnitude, sign); 826 } 827 828 /** 829 * Returns the size of an ulp of the argument. An ulp of a 830 * {@code double} value is the positive distance between this 831 * floating-point value and the {@code double} value next 832 * larger in magnitude. Note that for non-NaN <i>x</i>, 833 * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. 834 * 835 * <p>Special Cases: 836 * <ul> 837 * <li> If the argument is NaN, then the result is NaN. 838 * <li> If the argument is positive or negative infinity, then the 839 * result is positive infinity. 840 * <li> If the argument is positive or negative zero, then the result is 841 * {@code Double.MIN_VALUE}. 842 * <li> If the argument is ±{@code Double.MAX_VALUE}, then 843 * the result is equal to 2<sup>971</sup>. 844 * </ul> 845 * 846 * @param d the floating-point value whose ulp is to be returned 847 * @return the size of an ulp of the argument 848 * @author Joseph D. Darcy 849 * @since 1.5 850 * @deprecated Use Math.ulp. 851 */ 852 @Deprecated ulp(double d)853 public static double ulp(double d) { 854 return Math.ulp(d); 855 } 856 857 /** 858 * Returns the size of an ulp of the argument. An ulp of a 859 * {@code float} value is the positive distance between this 860 * floating-point value and the {@code float} value next 861 * larger in magnitude. Note that for non-NaN <i>x</i>, 862 * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. 863 * 864 * <p>Special Cases: 865 * <ul> 866 * <li> If the argument is NaN, then the result is NaN. 867 * <li> If the argument is positive or negative infinity, then the 868 * result is positive infinity. 869 * <li> If the argument is positive or negative zero, then the result is 870 * {@code Float.MIN_VALUE}. 871 * <li> If the argument is ±{@code Float.MAX_VALUE}, then 872 * the result is equal to 2<sup>104</sup>. 873 * </ul> 874 * 875 * @param f the floating-point value whose ulp is to be returned 876 * @return the size of an ulp of the argument 877 * @author Joseph D. Darcy 878 * @since 1.5 879 * @deprecated Use Math.ulp. 880 */ 881 @Deprecated ulp(float f)882 public static float ulp(float f) { 883 return Math.ulp(f); 884 } 885 886 /** 887 * Returns the signum function of the argument; zero if the argument 888 * is zero, 1.0 if the argument is greater than zero, -1.0 if the 889 * argument is less than zero. 890 * 891 * <p>Special Cases: 892 * <ul> 893 * <li> If the argument is NaN, then the result is NaN. 894 * <li> If the argument is positive zero or negative zero, then the 895 * result is the same as the argument. 896 * </ul> 897 * 898 * @param d the floating-point value whose signum is to be returned 899 * @return the signum function of the argument 900 * @author Joseph D. Darcy 901 * @since 1.5 902 * @deprecated Use Math.signum. 903 */ 904 @Deprecated signum(double d)905 public static double signum(double d) { 906 return Math.signum(d); 907 } 908 909 /** 910 * Returns the signum function of the argument; zero if the argument 911 * is zero, 1.0f if the argument is greater than zero, -1.0f if the 912 * argument is less than zero. 913 * 914 * <p>Special Cases: 915 * <ul> 916 * <li> If the argument is NaN, then the result is NaN. 917 * <li> If the argument is positive zero or negative zero, then the 918 * result is the same as the argument. 919 * </ul> 920 * 921 * @param f the floating-point value whose signum is to be returned 922 * @return the signum function of the argument 923 * @author Joseph D. Darcy 924 * @since 1.5 925 * @deprecated Use Math.signum. 926 */ 927 @Deprecated signum(float f)928 public static float signum(float f) { 929 return Math.signum(f); 930 } 931 } 932