1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36
37 #ifndef V8_CODEGEN_PPC_ASSEMBLER_PPC_INL_H_
38 #define V8_CODEGEN_PPC_ASSEMBLER_PPC_INL_H_
39
40 #include "src/codegen/ppc/assembler-ppc.h"
41
42 #include "src/codegen/assembler.h"
43 #include "src/debug/debug.h"
44 #include "src/objects/objects-inl.h"
45
46 namespace v8 {
47 namespace internal {
48
SupportsOptimizer()49 bool CpuFeatures::SupportsOptimizer() { return true; }
50
SupportsWasmSimd128()51 bool CpuFeatures::SupportsWasmSimd128() { return false; }
52
apply(intptr_t delta)53 void RelocInfo::apply(intptr_t delta) {
54 // absolute code pointer inside code object moves with the code object.
55 if (IsInternalReference(rmode_)) {
56 // Jump table entry
57 Address target = Memory<Address>(pc_);
58 Memory<Address>(pc_) = target + delta;
59 } else {
60 // mov sequence
61 DCHECK(IsInternalReferenceEncoded(rmode_));
62 Address target = Assembler::target_address_at(pc_, constant_pool_);
63 Assembler::set_target_address_at(pc_, constant_pool_, target + delta,
64 SKIP_ICACHE_FLUSH);
65 }
66 }
67
target_internal_reference()68 Address RelocInfo::target_internal_reference() {
69 if (IsInternalReference(rmode_)) {
70 // Jump table entry
71 return Memory<Address>(pc_);
72 } else {
73 // mov sequence
74 DCHECK(IsInternalReferenceEncoded(rmode_));
75 return Assembler::target_address_at(pc_, constant_pool_);
76 }
77 }
78
target_internal_reference_address()79 Address RelocInfo::target_internal_reference_address() {
80 DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
81 return pc_;
82 }
83
target_address()84 Address RelocInfo::target_address() {
85 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
86 return Assembler::target_address_at(pc_, constant_pool_);
87 }
88
target_address_address()89 Address RelocInfo::target_address_address() {
90 DCHECK(HasTargetAddressAddress());
91
92 if (FLAG_enable_embedded_constant_pool &&
93 Assembler::IsConstantPoolLoadStart(pc_)) {
94 // We return the PC for embedded constant pool since this function is used
95 // by the serializer and expects the address to reside within the code
96 // object.
97 return pc_;
98 }
99
100 // Read the address of the word containing the target_address in an
101 // instruction stream.
102 // The only architecture-independent user of this function is the serializer.
103 // The serializer uses it to find out how many raw bytes of instruction to
104 // output before the next target.
105 // For an instruction like LIS/ORI where the target bits are mixed into the
106 // instruction bits, the size of the target will be zero, indicating that the
107 // serializer should not step forward in memory after a target is resolved
108 // and written.
109 return pc_;
110 }
111
constant_pool_entry_address()112 Address RelocInfo::constant_pool_entry_address() {
113 if (FLAG_enable_embedded_constant_pool) {
114 DCHECK(constant_pool_);
115 ConstantPoolEntry::Access access;
116 if (Assembler::IsConstantPoolLoadStart(pc_, &access))
117 return Assembler::target_constant_pool_address_at(
118 pc_, constant_pool_, access, ConstantPoolEntry::INTPTR);
119 }
120 UNREACHABLE();
121 }
122
set_target_compressed_address_at(Address pc,Address constant_pool,Tagged_t target,ICacheFlushMode icache_flush_mode)123 void Assembler::set_target_compressed_address_at(
124 Address pc, Address constant_pool, Tagged_t target,
125 ICacheFlushMode icache_flush_mode) {
126 Assembler::set_target_address_at(
127 pc, constant_pool, static_cast<Address>(target), icache_flush_mode);
128 }
129
target_address_size()130 int RelocInfo::target_address_size() {
131 if (IsCodedSpecially()) {
132 return Assembler::kSpecialTargetSize;
133 } else {
134 return kSystemPointerSize;
135 }
136 }
137
target_compressed_address_at(Address pc,Address constant_pool)138 Tagged_t Assembler::target_compressed_address_at(Address pc,
139 Address constant_pool) {
140 return static_cast<Tagged_t>(target_address_at(pc, constant_pool));
141 }
142
code_target_object_handle_at(Address pc,Address constant_pool)143 Handle<Object> Assembler::code_target_object_handle_at(Address pc,
144 Address constant_pool) {
145 int index =
146 static_cast<int>(target_address_at(pc, constant_pool)) & 0xFFFFFFFF;
147 return GetCodeTarget(index);
148 }
149
target_object()150 HeapObject RelocInfo::target_object() {
151 DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
152 if (IsCompressedEmbeddedObject(rmode_)) {
153 return HeapObject::cast(Object(DecompressTaggedAny(
154 host_.address(),
155 Assembler::target_compressed_address_at(pc_, constant_pool_))));
156 } else {
157 return HeapObject::cast(
158 Object(Assembler::target_address_at(pc_, constant_pool_)));
159 }
160 }
161
target_object_no_host(Isolate * isolate)162 HeapObject RelocInfo::target_object_no_host(Isolate* isolate) {
163 if (IsCompressedEmbeddedObject(rmode_)) {
164 return HeapObject::cast(Object(DecompressTaggedAny(
165 isolate,
166 Assembler::target_compressed_address_at(pc_, constant_pool_))));
167 } else {
168 return target_object();
169 }
170 }
171
compressed_embedded_object_handle_at(Address pc,Address const_pool)172 Handle<HeapObject> Assembler::compressed_embedded_object_handle_at(
173 Address pc, Address const_pool) {
174 return GetEmbeddedObject(target_compressed_address_at(pc, const_pool));
175 }
176
target_object_handle(Assembler * origin)177 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
178 DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
179 if (IsCodeTarget(rmode_)) {
180 return Handle<HeapObject>::cast(
181 origin->code_target_object_handle_at(pc_, constant_pool_));
182 } else {
183 if (IsCompressedEmbeddedObject(rmode_)) {
184 return origin->compressed_embedded_object_handle_at(pc_, constant_pool_);
185 }
186 return Handle<HeapObject>(reinterpret_cast<Address*>(
187 Assembler::target_address_at(pc_, constant_pool_)));
188 }
189 }
190
set_target_object(Heap * heap,HeapObject target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)191 void RelocInfo::set_target_object(Heap* heap, HeapObject target,
192 WriteBarrierMode write_barrier_mode,
193 ICacheFlushMode icache_flush_mode) {
194 DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
195 if (IsCompressedEmbeddedObject(rmode_)) {
196 Assembler::set_target_compressed_address_at(
197 pc_, constant_pool_, CompressTagged(target.ptr()), icache_flush_mode);
198 } else {
199 DCHECK(IsFullEmbeddedObject(rmode_));
200 Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
201 icache_flush_mode);
202 }
203 if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
204 !FLAG_disable_write_barriers) {
205 WriteBarrierForCode(host(), this, target);
206 }
207 }
208
target_external_reference()209 Address RelocInfo::target_external_reference() {
210 DCHECK(rmode_ == EXTERNAL_REFERENCE);
211 return Assembler::target_address_at(pc_, constant_pool_);
212 }
213
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)214 void RelocInfo::set_target_external_reference(
215 Address target, ICacheFlushMode icache_flush_mode) {
216 DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
217 Assembler::set_target_address_at(pc_, constant_pool_, target,
218 icache_flush_mode);
219 }
220
target_runtime_entry(Assembler * origin)221 Address RelocInfo::target_runtime_entry(Assembler* origin) {
222 DCHECK(IsRuntimeEntry(rmode_));
223 return target_address();
224 }
225
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)226 void RelocInfo::set_target_runtime_entry(Address target,
227 WriteBarrierMode write_barrier_mode,
228 ICacheFlushMode icache_flush_mode) {
229 DCHECK(IsRuntimeEntry(rmode_));
230 if (target_address() != target)
231 set_target_address(target, write_barrier_mode, icache_flush_mode);
232 }
233
target_off_heap_target()234 Address RelocInfo::target_off_heap_target() {
235 DCHECK(IsOffHeapTarget(rmode_));
236 return Assembler::target_address_at(pc_, constant_pool_);
237 }
238
WipeOut()239 void RelocInfo::WipeOut() {
240 DCHECK(IsEmbeddedObjectMode(rmode_) || IsCodeTarget(rmode_) ||
241 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
242 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
243 IsOffHeapTarget(rmode_));
244 if (IsInternalReference(rmode_)) {
245 // Jump table entry
246 Memory<Address>(pc_) = kNullAddress;
247 } else if (IsCompressedEmbeddedObject(rmode_)) {
248 Assembler::set_target_compressed_address_at(pc_, constant_pool_,
249 kNullAddress);
250 } else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) {
251 // mov sequence
252 // Currently used only by deserializer, no need to flush.
253 Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress,
254 SKIP_ICACHE_FLUSH);
255 } else {
256 Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
257 }
258 }
259
Operand(Register rm)260 Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NONE) {}
261
UntrackBranch()262 void Assembler::UntrackBranch() {
263 DCHECK(!trampoline_emitted_);
264 DCHECK_GT(tracked_branch_count_, 0);
265 int count = --tracked_branch_count_;
266 if (count == 0) {
267 // Reset
268 next_trampoline_check_ = kMaxInt;
269 } else {
270 next_trampoline_check_ += kTrampolineSlotsSize;
271 }
272 }
273
274 // Fetch the 32bit value from the FIXED_SEQUENCE lis/ori
target_address_at(Address pc,Address constant_pool)275 Address Assembler::target_address_at(Address pc, Address constant_pool) {
276 if (FLAG_enable_embedded_constant_pool && constant_pool) {
277 ConstantPoolEntry::Access access;
278 if (IsConstantPoolLoadStart(pc, &access))
279 return Memory<Address>(target_constant_pool_address_at(
280 pc, constant_pool, access, ConstantPoolEntry::INTPTR));
281 }
282
283 Instr instr1 = instr_at(pc);
284 Instr instr2 = instr_at(pc + kInstrSize);
285 // Interpret 2 instructions generated by lis/ori
286 if (IsLis(instr1) && IsOri(instr2)) {
287 #if V8_TARGET_ARCH_PPC64
288 Instr instr4 = instr_at(pc + (3 * kInstrSize));
289 Instr instr5 = instr_at(pc + (4 * kInstrSize));
290 // Assemble the 64 bit value.
291 uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) |
292 static_cast<uint32_t>(instr2 & kImm16Mask));
293 uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) |
294 static_cast<uint32_t>(instr5 & kImm16Mask));
295 return static_cast<Address>((hi << 32) | lo);
296 #else
297 // Assemble the 32 bit value.
298 return static_cast<Address>(((instr1 & kImm16Mask) << 16) |
299 (instr2 & kImm16Mask));
300 #endif
301 }
302
303 UNREACHABLE();
304 }
305
306 #if V8_TARGET_ARCH_PPC64
307 const uint32_t kLoadIntptrOpcode = LD;
308 #else
309 const uint32_t kLoadIntptrOpcode = LWZ;
310 #endif
311
312 // Constant pool load sequence detection:
313 // 1) REGULAR access:
314 // load <dst>, kConstantPoolRegister + <offset>
315 //
316 // 2) OVERFLOWED access:
317 // addis <scratch>, kConstantPoolRegister, <offset_high>
318 // load <dst>, <scratch> + <offset_low>
IsConstantPoolLoadStart(Address pc,ConstantPoolEntry::Access * access)319 bool Assembler::IsConstantPoolLoadStart(Address pc,
320 ConstantPoolEntry::Access* access) {
321 Instr instr = instr_at(pc);
322 uint32_t opcode = instr & kOpcodeMask;
323 if (GetRA(instr) != kConstantPoolRegister) return false;
324 bool overflowed = (opcode == ADDIS);
325 #ifdef DEBUG
326 if (overflowed) {
327 opcode = instr_at(pc + kInstrSize) & kOpcodeMask;
328 }
329 DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD);
330 #endif
331 if (access) {
332 *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
333 : ConstantPoolEntry::REGULAR);
334 }
335 return true;
336 }
337
IsConstantPoolLoadEnd(Address pc,ConstantPoolEntry::Access * access)338 bool Assembler::IsConstantPoolLoadEnd(Address pc,
339 ConstantPoolEntry::Access* access) {
340 Instr instr = instr_at(pc);
341 uint32_t opcode = instr & kOpcodeMask;
342 bool overflowed = false;
343 if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false;
344 if (GetRA(instr) != kConstantPoolRegister) {
345 instr = instr_at(pc - kInstrSize);
346 opcode = instr & kOpcodeMask;
347 if ((opcode != ADDIS) || GetRA(instr) != kConstantPoolRegister) {
348 return false;
349 }
350 overflowed = true;
351 }
352 if (access) {
353 *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
354 : ConstantPoolEntry::REGULAR);
355 }
356 return true;
357 }
358
GetConstantPoolOffset(Address pc,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)359 int Assembler::GetConstantPoolOffset(Address pc,
360 ConstantPoolEntry::Access access,
361 ConstantPoolEntry::Type type) {
362 bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
363 #ifdef DEBUG
364 ConstantPoolEntry::Access access_check =
365 static_cast<ConstantPoolEntry::Access>(-1);
366 DCHECK(IsConstantPoolLoadStart(pc, &access_check));
367 DCHECK(access_check == access);
368 #endif
369 int offset;
370 if (overflowed) {
371 offset = (instr_at(pc) & kImm16Mask) << 16;
372 offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask);
373 DCHECK(!is_int16(offset));
374 } else {
375 offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask));
376 }
377 return offset;
378 }
379
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)380 void Assembler::PatchConstantPoolAccessInstruction(
381 int pc_offset, int offset, ConstantPoolEntry::Access access,
382 ConstantPoolEntry::Type type) {
383 Address pc = reinterpret_cast<Address>(buffer_start_) + pc_offset;
384 bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
385 CHECK(overflowed != is_int16(offset));
386 #ifdef DEBUG
387 ConstantPoolEntry::Access access_check =
388 static_cast<ConstantPoolEntry::Access>(-1);
389 DCHECK(IsConstantPoolLoadStart(pc, &access_check));
390 DCHECK(access_check == access);
391 #endif
392 if (overflowed) {
393 int hi_word = static_cast<int>(offset >> 16);
394 int lo_word = static_cast<int>(offset & 0xffff);
395 if (lo_word & 0x8000) hi_word++;
396
397 Instr instr1 = instr_at(pc);
398 Instr instr2 = instr_at(pc + kInstrSize);
399 instr1 &= ~kImm16Mask;
400 instr1 |= (hi_word & kImm16Mask);
401 instr2 &= ~kImm16Mask;
402 instr2 |= (lo_word & kImm16Mask);
403 instr_at_put(pc, instr1);
404 instr_at_put(pc + kInstrSize, instr2);
405 } else {
406 Instr instr = instr_at(pc);
407 instr &= ~kImm16Mask;
408 instr |= (offset & kImm16Mask);
409 instr_at_put(pc, instr);
410 }
411 }
412
target_constant_pool_address_at(Address pc,Address constant_pool,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)413 Address Assembler::target_constant_pool_address_at(
414 Address pc, Address constant_pool, ConstantPoolEntry::Access access,
415 ConstantPoolEntry::Type type) {
416 Address addr = constant_pool;
417 DCHECK(addr);
418 addr += GetConstantPoolOffset(pc, access, type);
419 return addr;
420 }
421
422 // This sets the branch destination (which gets loaded at the call address).
423 // This is for calls and branches within generated code. The serializer
424 // has already deserialized the mov instructions etc.
425 // There is a FIXED_SEQUENCE assumption here
deserialization_set_special_target_at(Address instruction_payload,Code code,Address target)426 void Assembler::deserialization_set_special_target_at(
427 Address instruction_payload, Code code, Address target) {
428 set_target_address_at(instruction_payload,
429 !code.is_null() ? code.constant_pool() : kNullAddress,
430 target);
431 }
432
deserialization_special_target_size(Address instruction_payload)433 int Assembler::deserialization_special_target_size(
434 Address instruction_payload) {
435 return kSpecialTargetSize;
436 }
437
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)438 void Assembler::deserialization_set_target_internal_reference_at(
439 Address pc, Address target, RelocInfo::Mode mode) {
440 if (RelocInfo::IsInternalReferenceEncoded(mode)) {
441 set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH);
442 } else {
443 Memory<Address>(pc) = target;
444 }
445 }
446
447 // This code assumes the FIXED_SEQUENCE of lis/ori
set_target_address_at(Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)448 void Assembler::set_target_address_at(Address pc, Address constant_pool,
449 Address target,
450 ICacheFlushMode icache_flush_mode) {
451 if (FLAG_enable_embedded_constant_pool && constant_pool) {
452 ConstantPoolEntry::Access access;
453 if (IsConstantPoolLoadStart(pc, &access)) {
454 Memory<Address>(target_constant_pool_address_at(
455 pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target;
456 return;
457 }
458 }
459
460 Instr instr1 = instr_at(pc);
461 Instr instr2 = instr_at(pc + kInstrSize);
462 // Interpret 2 instructions generated by lis/ori
463 if (IsLis(instr1) && IsOri(instr2)) {
464 #if V8_TARGET_ARCH_PPC64
465 Instr instr4 = instr_at(pc + (3 * kInstrSize));
466 Instr instr5 = instr_at(pc + (4 * kInstrSize));
467 // Needs to be fixed up when mov changes to handle 64-bit values.
468 uint32_t* p = reinterpret_cast<uint32_t*>(pc);
469 uintptr_t itarget = static_cast<uintptr_t>(target);
470
471 instr5 &= ~kImm16Mask;
472 instr5 |= itarget & kImm16Mask;
473 itarget = itarget >> 16;
474
475 instr4 &= ~kImm16Mask;
476 instr4 |= itarget & kImm16Mask;
477 itarget = itarget >> 16;
478
479 instr2 &= ~kImm16Mask;
480 instr2 |= itarget & kImm16Mask;
481 itarget = itarget >> 16;
482
483 instr1 &= ~kImm16Mask;
484 instr1 |= itarget & kImm16Mask;
485 itarget = itarget >> 16;
486
487 *p = instr1;
488 *(p + 1) = instr2;
489 *(p + 3) = instr4;
490 *(p + 4) = instr5;
491 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
492 FlushInstructionCache(p, 5 * kInstrSize);
493 }
494 #else
495 uint32_t* p = reinterpret_cast<uint32_t*>(pc);
496 uint32_t itarget = static_cast<uint32_t>(target);
497 int lo_word = itarget & kImm16Mask;
498 int hi_word = itarget >> 16;
499 instr1 &= ~kImm16Mask;
500 instr1 |= hi_word;
501 instr2 &= ~kImm16Mask;
502 instr2 |= lo_word;
503
504 *p = instr1;
505 *(p + 1) = instr2;
506 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
507 FlushInstructionCache(p, 2 * kInstrSize);
508 }
509 #endif
510 return;
511 }
512 UNREACHABLE();
513 }
514 } // namespace internal
515 } // namespace v8
516
517 #endif // V8_CODEGEN_PPC_ASSEMBLER_PPC_INL_H_
518