• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert ELEMENTS_TILE % 8 == 0
7$assert ELEMENTS_TILE >= 8
8$SIMD_TILE = ELEMENTS_TILE // 8
9$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
10#include <assert.h>
11
12#include <immintrin.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/vscaleextexp.h>
16
17
18static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19
20void xnn_f32_vscaleextexp_ukernel__avx2_p5_x${ELEMENTS_TILE}(
21    size_t elements,
22    const float* x,
23    float* y,
24    float scale_value,
25    float scale_exp)
26{
27  assert(elements % sizeof(float) == 0);
28
29  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
30  const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
31  const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
32
33  // The smallest elements such that 2**elements is considered non-negligible.
34  // For smaller elements, 2**elements is replaced with zero.
35  const __m256 vmin_exponent = _mm256_set1_ps(-127.0f);
36  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
37
38  const __m256 vc0 = _mm256_set1_ps(1.0f);
39  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
40  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
41  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
42  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
43  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
44
45  const __m256 vscalev = _mm256_set1_ps(scale_value);
46  const __m256 vscalee = _mm256_set1_ps(scale_exp);
47
48  for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
49    // Load ${ELEMENTS_TILE} (${SIMD_TILE}x8) inputs at a time.
50    const __m256 vx0 = _mm256_loadu_ps(x);
51    $for N in range(1, SIMD_TILE):
52      const __m256 vx${N} = _mm256_loadu_ps(x + ${N * 8});
53    x += ${ELEMENTS_TILE};
54
55    // Compute reduced argument elements := round(x / log(2)).
56    $for N in range(SIMD_TILE):
57      const __m256 vn${N} = _mm256_round_ps(_mm256_mul_ps(vx${N}, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
58
59    // Compute reduced argument t := x - elements * log(2).
60    // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
61    $for N in range(SIMD_TILE):
62      __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N});
63
64    $for N in range(SIMD_TILE):
65      vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N});
66
67    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
68    $for N in range(SIMD_TILE):
69      __m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4);
70
71    $for N in range(SIMD_TILE):
72      vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3);
73
74    $for N in range(SIMD_TILE):
75      vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2);
76
77    $for N in range(SIMD_TILE):
78      vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1);
79
80    $for N in range(SIMD_TILE):
81      vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc0);
82
83    // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where
84    //  - vnX is "exponent"
85    //  - vpX is "mantissa"
86    //
87    // exp2(ae) * av * exp2(be) * bv =
88    //   = exp2(ae + be) * (av * bv)
89    $for N in range(SIMD_TILE):
90      __m256 vf${N} = _mm256_mul_ps(vp${N}, vscalev);
91
92    $for N in range(SIMD_TILE):
93      __m256 ve${N} = _mm256_add_ps(vn${N}, vscalee);
94
95    // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
96    // This replacement is done in two steps:
97    // 1. Clamp minimum e at -127.0.
98    // 2. Map e to scale factor 0.0 when e == -127.0
99    $for N in range(SIMD_TILE):
100      ve${N} = _mm256_max_ps(ve${N}, vmin_exponent);
101
102    // Convert exponents into scale factors:
103    // - s = exp2(e) when e > -127.0
104    // - s = 0.0 when e <= -127.0
105    $for N in range(SIMD_TILE):
106      const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve${N}, vmagic_bias)), 23));
107
108    // Multiply "mantissa" by the scale factor.
109    $for N in range(SIMD_TILE):
110      vf${N} = _mm256_mul_ps(vf${N}, vs${N});
111
112    // Store ${ELEMENTS_TILE} (${SIMD_TILE}x8) outputs at a time.
113    _mm256_storeu_ps(y, vf0);
114    $for N in range(1, SIMD_TILE):
115      _mm256_storeu_ps(y + ${N * 8}, vf${N});
116    y += ${ELEMENTS_TILE};
117  }
118
119  for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
120    // Load 8 inputs at a time.
121    const __m256 vx = _mm256_loadu_ps(x);
122    x += 8;
123
124    // Compute reduced argument elements := round(x / log(2)).
125    const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
126
127    // Compute reduced argument t := x - elements * log(2).
128    // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
129    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
130    vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
131
132    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
133    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
134    vp = _mm256_fmadd_ps(vp, vt, vc3);
135    vp = _mm256_fmadd_ps(vp, vt, vc2);
136    vp = _mm256_fmadd_ps(vp, vt, vc1);
137    vp = _mm256_fmadd_ps(vp, vt, vc0);
138
139    // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
140    __m256 vf = _mm256_mul_ps(vp, vscalev);
141    __m256 ve = _mm256_add_ps(vn, vscalee);
142
143    // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
144    ve = _mm256_max_ps(ve, vmin_exponent);
145
146    // Convert exponents into scale factors.
147    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
148
149    // Multiply "mantissa" by the scale factor.
150    vf = _mm256_mul_ps(vf, vs);
151
152    // Store 8 results at a time.
153    _mm256_storeu_ps(y, vf);
154    y += 8;
155  }
156  if XNN_UNLIKELY(elements != 0) {
157    assert(elements >= 1 * sizeof(float));
158    assert(elements <= 7 * sizeof(float));
159    const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
160
161    // Load up to 7 inputs at a time.
162    const __m256 vx = _mm256_maskload_ps(x, vmask);
163
164    // Compute reduced argument elements := round(x / log(2)).
165    const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
166
167    // Compute reduced argument t := x - elements * log(2).
168    // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
169    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
170    vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
171
172    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
173    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
174    vp = _mm256_fmadd_ps(vp, vt, vc3);
175    vp = _mm256_fmadd_ps(vp, vt, vc2);
176    vp = _mm256_fmadd_ps(vp, vt, vc1);
177    vp = _mm256_fmadd_ps(vp, vt, vc0);
178
179    // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
180    __m256 vf = _mm256_mul_ps(vp, vscalev);
181    __m256 ve = _mm256_add_ps(vn, vscalee);
182
183    // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
184    ve = _mm256_max_ps(ve, vmin_exponent);
185
186    // Convert exponents into scale factors.
187    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
188
189    // Multiply "mantissa" by the scale factor.
190    vf = _mm256_mul_ps(vf, vs);
191
192    // Store up to 7 inputs at a time.
193    _mm256_maskstore_ps(y, vmask, vf);
194  }
195  _mm256_zeroupper();
196}
197