• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD: head/lib/msun/src/k_exp.c 326219 2017-11-26 02:00:33Z pfg $");
31 
32 #include <complex.h>
33 
34 #include "math.h"
35 #include "math_private.h"
36 
37 static const uint32_t k = 1799;		/* constant for reduction */
38 static const double kln2 =  1246.97177782734161156;	/* k * ln2 */
39 
40 /*
41  * Compute exp(x), scaled to avoid spurious overflow.  An exponent is
42  * returned separately in 'expt'.
43  *
44  * Input:  ln(DBL_MAX) <= x < ln(2 * DBL_MAX / DBL_MIN_DENORM) ~= 1454.91
45  * Output: 2**1023 <= y < 2**1024
46  */
47 static double
__frexp_exp(double x,int * expt)48 __frexp_exp(double x, int *expt)
49 {
50 	double exp_x;
51 	uint32_t hx;
52 
53 	/*
54 	 * We use exp(x) = exp(x - kln2) * 2**k, carefully chosen to
55 	 * minimize |exp(kln2) - 2**k|.  We also scale the exponent of
56 	 * exp_x to MAX_EXP so that the result can be multiplied by
57 	 * a tiny number without losing accuracy due to denormalization.
58 	 */
59 	exp_x = exp(x - kln2);
60 	GET_HIGH_WORD(hx, exp_x);
61 	*expt = (hx >> 20) - (0x3ff + 1023) + k;
62 	SET_HIGH_WORD(exp_x, (hx & 0xfffff) | ((0x3ff + 1023) << 20));
63 	return (exp_x);
64 }
65 
66 /*
67  * __ldexp_exp(x, expt) and __ldexp_cexp(x, expt) compute exp(x) * 2**expt.
68  * They are intended for large arguments (real part >= ln(DBL_MAX))
69  * where care is needed to avoid overflow.
70  *
71  * The present implementation is narrowly tailored for our hyperbolic and
72  * exponential functions.  We assume expt is small (0 or -1), and the caller
73  * has filtered out very large x, for which overflow would be inevitable.
74  */
75 
76 double
__ldexp_exp(double x,int expt)77 __ldexp_exp(double x, int expt)
78 {
79 	double exp_x, scale;
80 	int ex_expt;
81 
82 	exp_x = __frexp_exp(x, &ex_expt);
83 	expt += ex_expt;
84 	INSERT_WORDS(scale, (0x3ff + expt) << 20, 0);
85 	return (exp_x * scale);
86 }
87 
88 double complex
__ldexp_cexp(double complex z,int expt)89 __ldexp_cexp(double complex z, int expt)
90 {
91 	double x, y, exp_x, scale1, scale2;
92 	int ex_expt, half_expt;
93 
94 	x = creal(z);
95 	y = cimag(z);
96 	exp_x = __frexp_exp(x, &ex_expt);
97 	expt += ex_expt;
98 
99 	/*
100 	 * Arrange so that scale1 * scale2 == 2**expt.  We use this to
101 	 * compensate for scalbn being horrendously slow.
102 	 */
103 	half_expt = expt / 2;
104 	INSERT_WORDS(scale1, (0x3ff + half_expt) << 20, 0);
105 	half_expt = expt - half_expt;
106 	INSERT_WORDS(scale2, (0x3ff + half_expt) << 20, 0);
107 
108 	return (CMPLX(cos(y) * exp_x * scale1 * scale2,
109 	    sin(y) * exp_x * scale1 * scale2));
110 }
111