• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2014 The Android Open Source Project
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#      http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15import os.path
16import its.caps
17import its.device
18import its.image
19import its.objects
20import its.target
21import numpy
22
23NAME = os.path.basename(__file__).split(".")[0]
24# A list of 5 regions, specified in normalized (x,y,w,h) coords.
25# The regions correspond to: TL, TR, BL, BR, CENT
26REGIONS = [(0.0, 0.0, 0.5, 0.5),
27           (0.5, 0.0, 0.5, 0.5),
28           (0.0, 0.5, 0.5, 0.5),
29           (0.5, 0.5, 0.5, 0.5),
30           (0.25, 0.25, 0.5, 0.5)]
31
32
33def main():
34    """Test that crop regions work."""
35
36    with its.device.ItsSession() as cam:
37        props = cam.get_camera_properties()
38        its.caps.skip_unless(its.caps.compute_target_exposure(props) and
39                             its.caps.freeform_crop(props) and
40                             its.caps.per_frame_control(props))
41
42        a = props["android.sensor.info.activeArraySize"]
43        ax, ay = a["left"], a["top"]
44        aw, ah = a["right"] - a["left"], a["bottom"] - a["top"]
45        e, s = its.target.get_target_exposure_combos(cam)["minSensitivity"]
46        print "Active sensor region (%d,%d %dx%d)" % (ax, ay, aw, ah)
47
48        # Uses a 2x digital zoom.
49        assert its.objects.get_max_digital_zoom(props) >= 2
50
51        # Capture a full frame.
52        req = its.objects.manual_capture_request(s, e)
53        cap_full = cam.do_capture(req)
54        img_full = its.image.convert_capture_to_rgb_image(cap_full)
55        wfull, hfull = cap_full["width"], cap_full["height"]
56        its.image.write_image(
57                img_full, "%s_full_%dx%d.jpg" % (NAME, wfull, hfull))
58
59        # Capture a burst of crop region frames.
60        # Note that each region is 1/2x1/2 of the full frame, and is digitally
61        # zoomed into the full size output image, so must be downscaled (below)
62        # by 2x when compared to a tile of the full image.
63        reqs = []
64        for x, y, w, h in REGIONS:
65            req = its.objects.manual_capture_request(s, e)
66            req["android.scaler.cropRegion"] = {
67                    "top": int(ah * y),
68                    "left": int(aw * x),
69                    "right": int(aw * (x + w)),
70                    "bottom": int(ah * (y + h))}
71            reqs.append(req)
72        caps_regions = cam.do_capture(reqs)
73        match_failed = False
74        for i, cap in enumerate(caps_regions):
75            a = cap["metadata"]["android.scaler.cropRegion"]
76            ax, ay = a["left"], a["top"]
77            aw, ah = a["right"] - a["left"], a["bottom"] - a["top"]
78
79            # Match this crop image against each of the five regions of
80            # the full image, to find the best match (which should be
81            # the region that corresponds to this crop image).
82            img_crop = its.image.convert_capture_to_rgb_image(cap)
83            img_crop = its.image.downscale_image(img_crop, 2)
84            its.image.write_image(img_crop, "%s_crop%d.jpg" % (NAME, i))
85            min_diff = None
86            min_diff_region = None
87            for j, (x, y, w, h) in enumerate(REGIONS):
88                tile_full = its.image.get_image_patch(img_full, x, y, w, h)
89                wtest = min(tile_full.shape[1], aw)
90                htest = min(tile_full.shape[0], ah)
91                tile_full = tile_full[0:htest:, 0:wtest:, ::]
92                tile_crop = img_crop[0:htest:, 0:wtest:, ::]
93                its.image.write_image(
94                        tile_full, "%s_fullregion%d.jpg" % (NAME, j))
95                diff = numpy.fabs(tile_full - tile_crop).mean()
96                if min_diff is None or diff < min_diff:
97                    min_diff = diff
98                    min_diff_region = j
99            if i != min_diff_region:
100                match_failed = True
101            print "Crop image %d (%d,%d %dx%d) best match with region %d"%(
102                    i, ax, ay, aw, ah, min_diff_region)
103
104        assert not match_failed
105
106if __name__ == "__main__":
107    main()
108
109