• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "Vibrator.h"
18 #include "utils.h"
19 
20 #include <android/looper.h>
21 #include <android/sensor.h>
22 #include <cutils/properties.h>
23 #include <hardware/hardware.h>
24 #include <hardware/vibrator.h>
25 #include <log/log.h>
26 #include <utils/Errors.h>
27 #include <utils/Trace.h>
28 
29 #include <cinttypes>
30 #include <cmath>
31 #include <fstream>
32 #include <iostream>
33 #include <numeric>
34 
35 namespace aidl {
36 namespace android {
37 namespace hardware {
38 namespace vibrator {
39 
40 using ::android::NO_ERROR;
41 using ::android::UNEXPECTED_NULL;
42 
43 static constexpr int8_t MAX_RTP_INPUT = 127;
44 static constexpr int8_t MIN_RTP_INPUT = 0;
45 
46 static constexpr char RTP_MODE[] = "rtp";
47 static constexpr char WAVEFORM_MODE[] = "waveform";
48 
49 // Use effect #1 in the waveform library for CLICK effect
50 static constexpr char WAVEFORM_CLICK_EFFECT_SEQ[] = "1 0";
51 
52 // Use effect #2 in the waveform library for TICK effect
53 static constexpr char WAVEFORM_TICK_EFFECT_SEQ[] = "2 0";
54 
55 // Use effect #3 in the waveform library for DOUBLE_CLICK effect
56 static constexpr char WAVEFORM_DOUBLE_CLICK_EFFECT_SEQ[] = "3 0";
57 
58 // Use effect #4 in the waveform library for HEAVY_CLICK effect
59 static constexpr char WAVEFORM_HEAVY_CLICK_EFFECT_SEQ[] = "4 0";
60 
61 // UT team design those target G values
62 static constexpr std::array<float, 5> EFFECT_TARGET_G = {0.19, 0.30, 0.39, 0.66, 0.75};
63 static constexpr std::array<float, 3> STEADY_TARGET_G = {1.5, 1.145, 0.82};
64 
65 struct SensorContext {
66     ASensorEventQueue *queue;
67 };
68 static std::vector<float> sXAxleData;
69 static std::vector<float> sYAxleData;
70 static uint64_t sEndTime = 0;
71 static struct timespec sGetTime;
72 
73 #define MAX_VOLTAGE 3.2
74 #define FLOAT_EPS 1e-7
75 #define SENSOR_DATA_NUM 20
76 // Set sensing period to 2s
77 #define SENSING_PERIOD 2000000000
78 #define VIBRATION_MOTION_TIME_THRESHOLD 100
79 #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
80 
GSensorCallback(int fd,int events,void * data)81 int GSensorCallback(__attribute__((unused)) int fd, __attribute__((unused)) int events,
82                     void *data) {
83     ASensorEvent event;
84     int event_count = 0;
85     SensorContext *context = reinterpret_cast<SensorContext *>(data);
86     event_count = ASensorEventQueue_getEvents(context->queue, &event, 1);
87     sXAxleData.push_back(event.data[0]);
88     sYAxleData.push_back(event.data[1]);
89     return 1;
90 }
91 // TODO: b/152305970
PollGSensor()92 int32_t PollGSensor() {
93     int err = NO_ERROR, counter = 0;
94     ASensorManager *sensorManager = nullptr;
95     ASensorRef GSensor;
96     ALooper *looper;
97     struct SensorContext context = {nullptr};
98 
99     // Get proximity sensor events from the NDK
100     sensorManager = ASensorManager_getInstanceForPackage("");
101     if (!sensorManager) {
102         ALOGI("Chase %s: Sensor manager is NULL.\n", __FUNCTION__);
103         err = UNEXPECTED_NULL;
104         return 0;
105     }
106     GSensor = ASensorManager_getDefaultSensor(sensorManager, ASENSOR_TYPE_GRAVITY);
107     if (GSensor == nullptr) {
108         ALOGE("%s:Chase Unable to get g sensor\n", __func__);
109     } else {
110         looper = ALooper_forThread();
111         if (looper == nullptr) {
112             looper = ALooper_prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS);
113         }
114         context.queue =
115             ASensorManager_createEventQueue(sensorManager, looper, 0, GSensorCallback, &context);
116 
117         err = ASensorEventQueue_registerSensor(context.queue, GSensor, 0, 0);
118         if (err != NO_ERROR) {
119             ALOGE("Chase %s: Error %d registering G sensor with event queue.\n", __FUNCTION__, err);
120             return 0;
121         }
122         if (err < 0) {
123             ALOGE("%s:Chase Unable to register for G sensor events\n", __func__);
124         } else {
125             for (counter = 0; counter < SENSOR_DATA_NUM; counter++) {
126                 ALooper_pollOnce(5, nullptr, nullptr, nullptr);
127             }
128         }
129     }
130     if (sensorManager != nullptr && context.queue != nullptr) {
131         ASensorEventQueue_disableSensor(context.queue, GSensor);
132         ASensorManager_destroyEventQueue(sensorManager, context.queue);
133     }
134 
135     return 0;
136 }
137 
138 // Temperature protection upper bound 10°C and lower bound 5°C
139 static constexpr int32_t TEMP_UPPER_BOUND = 10000;
140 static constexpr int32_t TEMP_LOWER_BOUND = 5000;
141 // Steady vibration's voltage in lower bound guarantee
142 static uint32_t STEADY_VOLTAGE_LOWER_BOUND = 90;  // 1.8 Vpeak
143 
freqPeriodFormula(std::uint32_t in)144 static std::uint32_t freqPeriodFormula(std::uint32_t in) {
145     return 1000000000 / (24615 * in);
146 }
147 
convertLevelsToOdClamp(float voltageLevel,uint32_t lraPeriod)148 static std::uint32_t convertLevelsToOdClamp(float voltageLevel, uint32_t lraPeriod) {
149     float odClamp;
150 
151     odClamp = voltageLevel /
152               ((21.32 / 1000.0) *
153                sqrt(1.0 - (static_cast<float>(freqPeriodFormula(lraPeriod)) * 8.0 / 10000.0)));
154 
155     return round(odClamp);
156 }
157 
targetGToVlevelsUnderLinearEquation(std::array<float,4> inputCoeffs,float targetG)158 static float targetGToVlevelsUnderLinearEquation(std::array<float, 4> inputCoeffs, float targetG) {
159     // Implement linear equation to get voltage levels, f(x) = ax + b
160     // 0 to 3.2 is our valid output
161     float outPutVal = 0.0f;
162     outPutVal = (targetG - inputCoeffs[1]) / inputCoeffs[0];
163     if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
164         return outPutVal;
165     } else {
166         return 0.0f;
167     }
168 }
169 
targetGToVlevelsUnderCubicEquation(std::array<float,4> inputCoeffs,float targetG)170 static float targetGToVlevelsUnderCubicEquation(std::array<float, 4> inputCoeffs, float targetG) {
171     // Implement cubic equation to get voltage levels, f(x) = ax^3 + bx^2 + cx + d
172     // 0 to 3.2 is our valid output
173     float AA = 0.0f, BB = 0.0f, CC = 0.0f, Delta = 0.0f;
174     float Y1 = 0.0f, Y2 = 0.0f, K = 0.0f, T = 0.0f, sita = 0.0f;
175     float outPutVal = 0.0f;
176     float oneHalf = 1.0 / 2.0, oneThird = 1.0 / 3.0;
177     float cosSita = 0.0f, sinSitaSqrt3 = 0.0f, sqrtA = 0.0f;
178 
179     AA = inputCoeffs[1] * inputCoeffs[1] - 3.0 * inputCoeffs[0] * inputCoeffs[2];
180     BB = inputCoeffs[1] * inputCoeffs[2] - 9.0 * inputCoeffs[0] * (inputCoeffs[3] - targetG);
181     CC = inputCoeffs[2] * inputCoeffs[2] - 3.0 * inputCoeffs[1] * (inputCoeffs[3] - targetG);
182 
183     Delta = BB * BB - 4.0 * AA * CC;
184 
185     // There are four discriminants in Shengjin formula.
186     // https://zh.wikipedia.org/wiki/%E4%B8%89%E6%AC%A1%E6%96%B9%E7%A8%8B#%E7%9B%9B%E9%87%91%E5%85%AC%E5%BC%8F%E6%B3%95
187     if ((fabs(AA) <= FLOAT_EPS) && (fabs(BB) <= FLOAT_EPS)) {
188         // Case 1: A = B = 0
189         outPutVal = -inputCoeffs[1] / (3 * inputCoeffs[0]);
190         if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
191             return outPutVal;
192         }
193         return 0.0f;
194     } else if (Delta > FLOAT_EPS) {
195         // Case 2: Delta > 0
196         Y1 = AA * inputCoeffs[1] + 3.0 * inputCoeffs[0] * (-BB + pow(Delta, oneHalf)) / 2.0;
197         Y2 = AA * inputCoeffs[1] + 3.0 * inputCoeffs[0] * (-BB - pow(Delta, oneHalf)) / 2.0;
198 
199         if ((Y1 < -FLOAT_EPS) && (Y2 > FLOAT_EPS)) {
200             return (-inputCoeffs[1] + pow(-Y1, oneThird) - pow(Y2, oneThird)) /
201                    (3.0 * inputCoeffs[0]);
202         } else if ((Y1 > FLOAT_EPS) && (Y2 < -FLOAT_EPS)) {
203             return (-inputCoeffs[1] - pow(Y1, oneThird) + pow(-Y2, oneThird)) /
204                    (3.0 * inputCoeffs[0]);
205         } else if ((Y1 < -FLOAT_EPS) && (Y2 < -FLOAT_EPS)) {
206             return (-inputCoeffs[1] + pow(-Y1, oneThird) + pow(-Y2, oneThird)) /
207                    (3.0 * inputCoeffs[0]);
208         } else {
209             return (-inputCoeffs[1] - pow(Y1, oneThird) - pow(Y2, oneThird)) /
210                    (3.0 * inputCoeffs[0]);
211         }
212         return 0.0f;
213     } else if (Delta < -FLOAT_EPS) {
214         // Case 3: Delta < 0
215         T = (2 * AA * inputCoeffs[1] - 3 * inputCoeffs[0] * BB) / (2 * AA * sqrt(AA));
216         sita = acos(T);
217         cosSita = cos(sita / 3);
218         sinSitaSqrt3 = sqrt(3.0) * sin(sita / 3);
219         sqrtA = sqrt(AA);
220 
221         outPutVal = (-inputCoeffs[1] - 2 * sqrtA * cosSita) / (3 * inputCoeffs[0]);
222         if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
223             return outPutVal;
224         }
225         outPutVal = (-inputCoeffs[1] + sqrtA * (cosSita + sinSitaSqrt3)) / (3 * inputCoeffs[0]);
226         if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
227             return outPutVal;
228         }
229         outPutVal = (-inputCoeffs[1] + sqrtA * (cosSita - sinSitaSqrt3)) / (3 * inputCoeffs[0]);
230         if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
231             return outPutVal;
232         }
233         return 0.0f;
234     } else if (Delta <= FLOAT_EPS) {
235         // Case 4: Delta = 0
236         K = BB / AA;
237         outPutVal = (-inputCoeffs[1] / inputCoeffs[0] + K);
238         if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
239             return outPutVal;
240         }
241         outPutVal = (-K / 2);
242         if ((outPutVal > FLOAT_EPS) && (outPutVal <= MAX_VOLTAGE)) {
243             return outPutVal;
244         }
245         return 0.0f;
246     } else {
247         // Exception handling
248         return 0.0f;
249     }
250 }
251 
vLevelsToTargetGUnderCubicEquation(std::array<float,4> inputCoeffs,float vLevel)252 static float vLevelsToTargetGUnderCubicEquation(std::array<float, 4> inputCoeffs, float vLevel) {
253     float inputVoltage = 0.0f;
254     inputVoltage = vLevel * MAX_VOLTAGE;
255     return inputCoeffs[0] * pow(inputVoltage, 3) + inputCoeffs[1] * pow(inputVoltage, 2) +
256            inputCoeffs[2] * inputVoltage + inputCoeffs[3];
257 }
258 
motionAwareness()259 static bool motionAwareness() {
260     float avgX = 0.0, avgY = 0.0;
261     uint64_t current_time = 0;
262     clock_gettime(CLOCK_MONOTONIC, &sGetTime);
263     current_time = ((uint64_t)sGetTime.tv_sec * 1000 * 1000 * 1000) + sGetTime.tv_nsec;
264 
265     if ((current_time - sEndTime) > SENSING_PERIOD) {
266         sXAxleData.clear();
267         sYAxleData.clear();
268         PollGSensor();
269         clock_gettime(CLOCK_MONOTONIC, &sGetTime);
270         sEndTime = ((uint64_t)sGetTime.tv_sec * 1000 * 1000 * 1000) + sGetTime.tv_nsec;
271     }
272 
273     avgX = std::accumulate(sXAxleData.begin(), sXAxleData.end(), 0.0) / sXAxleData.size();
274     avgY = std::accumulate(sYAxleData.begin(), sYAxleData.end(), 0.0) / sYAxleData.size();
275 
276     if ((avgX > -1.3) && (avgX < 1.3) && (avgY > -0.8) && (avgY < 0.8)) {
277         return false;
278     } else {
279         return true;
280     }
281 }
282 
283 using utils::toUnderlying;
284 
Vibrator(std::unique_ptr<HwApi> hwapi,std::unique_ptr<HwCal> hwcal)285 Vibrator::Vibrator(std::unique_ptr<HwApi> hwapi, std::unique_ptr<HwCal> hwcal)
286     : mHwApi(std::move(hwapi)), mHwCal(std::move(hwcal)) {
287     std::string autocal;
288     uint32_t lraPeriod = 0, lpTrigSupport = 0;
289     bool hasEffectCoeffs = false, hasSteadyCoeffs = false;
290     std::array<float, 4> effectCoeffs = {0};
291     std::array<float, 4> steadyCoeffs = {0};
292 
293     if (!mHwApi->setState(true)) {
294         ALOGE("Failed to set state (%d): %s", errno, strerror(errno));
295     }
296 
297     if (mHwCal->getAutocal(&autocal)) {
298         mHwApi->setAutocal(autocal);
299     }
300     mHwCal->getLraPeriod(&lraPeriod);
301 
302     mHwCal->getCloseLoopThreshold(&mCloseLoopThreshold);
303     mHwCal->getDynamicConfig(&mDynamicConfig);
304 
305     if (mDynamicConfig) {
306         uint8_t i = 0;
307         float tempVolLevel = 0.0f;
308         float tempAmpMax = 0.0f;
309         uint32_t longFreqencyShift = 0;
310         uint32_t shortVoltageMax = 0, longVoltageMax = 0;
311         uint32_t shape = 0;
312 
313         mHwCal->getLongFrequencyShift(&longFreqencyShift);
314         mHwCal->getShortVoltageMax(&shortVoltageMax);
315         mHwCal->getLongVoltageMax(&longVoltageMax);
316 
317         hasEffectCoeffs = mHwCal->getEffectCoeffs(&effectCoeffs);
318         for (i = 0; i < 5; i++) {
319             if (hasEffectCoeffs) {
320                 // Use linear approach to get the target voltage levels
321                 if ((effectCoeffs[2] == 0) && (effectCoeffs[3] == 0)) {
322                     tempVolLevel =
323                         targetGToVlevelsUnderLinearEquation(effectCoeffs, EFFECT_TARGET_G[i]);
324                     mEffectTargetOdClamp[i] = convertLevelsToOdClamp(tempVolLevel, lraPeriod);
325                 } else {
326                     // Use cubic approach to get the target voltage levels
327                     tempVolLevel =
328                         targetGToVlevelsUnderCubicEquation(effectCoeffs, EFFECT_TARGET_G[i]);
329                     mEffectTargetOdClamp[i] = convertLevelsToOdClamp(tempVolLevel, lraPeriod);
330                 }
331             } else {
332                 mEffectTargetOdClamp[i] = shortVoltageMax;
333             }
334         }
335         // Add a boundary protection for level 5 only, since
336         // some devices might not be able to reach the maximum target G
337         if ((mEffectTargetOdClamp[4] <= 0) || (mEffectTargetOdClamp[4] > shortVoltageMax)) {
338             mEffectTargetOdClamp[4] = shortVoltageMax;
339         }
340 
341         mHwCal->getEffectShape(&shape);
342         mEffectConfig.reset(new VibrationConfig({
343             .shape = (shape == UINT32_MAX) ? WaveShape::SINE : static_cast<WaveShape>(shape),
344             .odClamp = &mEffectTargetOdClamp[0],
345             .olLraPeriod = lraPeriod,
346         }));
347 
348         hasSteadyCoeffs = mHwCal->getSteadyCoeffs(&steadyCoeffs);
349         if (hasSteadyCoeffs) {
350             for (i = 0; i < 3; i++) {
351                 // Use cubic approach to get the steady target voltage levels
352                 // For steady level 3 voltage which is used for non-motion voltage, we use
353                 // interpolation method to calculate the voltage via 20% of MAX
354                 // voltage, 60% of MAX voltage and steady level 3 target G
355                 if (i == 2) {
356                     tempVolLevel = ((STEADY_TARGET_G[2] -
357                                      vLevelsToTargetGUnderCubicEquation(steadyCoeffs, 0.2)) *
358                                     0.4 * MAX_VOLTAGE) /
359                                        (vLevelsToTargetGUnderCubicEquation(steadyCoeffs, 0.6) -
360                                         vLevelsToTargetGUnderCubicEquation(steadyCoeffs, 0.2)) +
361                                    0.2 * MAX_VOLTAGE;
362                 } else {
363                     tempVolLevel =
364                         targetGToVlevelsUnderCubicEquation(steadyCoeffs, STEADY_TARGET_G[i]);
365                 }
366                 mSteadyTargetOdClamp[i] = convertLevelsToOdClamp(tempVolLevel, lraPeriod);
367                 if ((mSteadyTargetOdClamp[i] <= 0) || (mSteadyTargetOdClamp[i] > longVoltageMax)) {
368                     mSteadyTargetOdClamp[i] = longVoltageMax;
369                 }
370             }
371         } else {
372             mSteadyTargetOdClamp[0] =
373                 mHwCal->getSteadyAmpMax(&tempAmpMax)
374                     ? round((STEADY_TARGET_G[0] / tempAmpMax) * longVoltageMax)
375                     : longVoltageMax;
376             mSteadyTargetOdClamp[2] =
377                 mHwCal->getSteadyAmpMax(&tempAmpMax)
378                     ? round((STEADY_TARGET_G[2] / tempAmpMax) * longVoltageMax)
379                     : longVoltageMax;
380         }
381         mHwCal->getSteadyShape(&shape);
382         mSteadyConfig.reset(new VibrationConfig({
383             .shape = (shape == UINT32_MAX) ? WaveShape::SQUARE : static_cast<WaveShape>(shape),
384             .odClamp = &mSteadyTargetOdClamp[0],
385             .olLraPeriod = lraPeriod,
386         }));
387         mSteadyOlLraPeriod = lraPeriod;
388         // 1. Change long lra period to frequency
389         // 2. Get frequency': subtract the frequency shift from the frequency
390         // 3. Get final long lra period after put the frequency' to formula
391         mSteadyOlLraPeriodShift =
392             freqPeriodFormula(freqPeriodFormula(lraPeriod) - longFreqencyShift);
393     } else {
394         mHwApi->setOlLraPeriod(lraPeriod);
395     }
396 
397     mHwCal->getClickDuration(&mClickDuration);
398     mHwCal->getTickDuration(&mTickDuration);
399     mHwCal->getDoubleClickDuration(&mDoubleClickDuration);
400     mHwCal->getHeavyClickDuration(&mHeavyClickDuration);
401 
402     // This enables effect #1 from the waveform library to be triggered by SLPI
403     // while the AP is in suspend mode
404     // For default setting, we will enable this feature if that project did not
405     // set the lptrigger config
406     mHwCal->getTriggerEffectSupport(&lpTrigSupport);
407     if (!mHwApi->setLpTriggerEffect(lpTrigSupport)) {
408         ALOGW("Failed to set LP trigger mode (%d): %s", errno, strerror(errno));
409     }
410 }
411 
getCapabilities(int32_t * _aidl_return)412 ndk::ScopedAStatus Vibrator::getCapabilities(int32_t *_aidl_return) {
413     ATRACE_NAME("Vibrator::getCapabilities");
414     int32_t ret = 0;
415     if (mHwApi->hasRtpInput()) {
416         ret |= IVibrator::CAP_AMPLITUDE_CONTROL;
417     }
418     *_aidl_return = ret;
419     return ndk::ScopedAStatus::ok();
420 }
421 
on(uint32_t timeoutMs,const char mode[],const std::unique_ptr<VibrationConfig> & config,const int8_t volOffset)422 ndk::ScopedAStatus Vibrator::on(uint32_t timeoutMs, const char mode[],
423                                 const std::unique_ptr<VibrationConfig> &config,
424                                 const int8_t volOffset) {
425     LoopControl loopMode = LoopControl::OPEN;
426 
427     // Open-loop mode is used for short click for over-drive
428     // Close-loop mode is used for long notification for stability
429     if (mode == RTP_MODE && timeoutMs > mCloseLoopThreshold) {
430         loopMode = LoopControl::CLOSE;
431     }
432 
433     mHwApi->setCtrlLoop(toUnderlying(loopMode));
434     if (!mHwApi->setDuration(timeoutMs)) {
435         ALOGE("Failed to set duration (%d): %s", errno, strerror(errno));
436         return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
437     }
438 
439     mHwApi->setMode(mode);
440     if (config != nullptr) {
441         mHwApi->setLraWaveShape(toUnderlying(config->shape));
442         mHwApi->setOdClamp(config->odClamp[volOffset]);
443         mHwApi->setOlLraPeriod(config->olLraPeriod);
444     }
445 
446     if (!mHwApi->setActivate(1)) {
447         ALOGE("Failed to activate (%d): %s", errno, strerror(errno));
448         return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
449     }
450 
451     return ndk::ScopedAStatus::ok();
452 }
453 
on(int32_t timeoutMs,const std::shared_ptr<IVibratorCallback> & callback)454 ndk::ScopedAStatus Vibrator::on(int32_t timeoutMs,
455                                 const std::shared_ptr<IVibratorCallback> &callback) {
456     ATRACE_NAME("Vibrator::on");
457 
458     if (callback) {
459         return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
460     }
461 
462     if (mDynamicConfig) {
463         int temperature = 0;
464         mHwApi->getPATemp(&temperature);
465         if (temperature > TEMP_UPPER_BOUND) {
466             mSteadyConfig->odClamp = &mSteadyTargetOdClamp[0];
467             mSteadyConfig->olLraPeriod = mSteadyOlLraPeriod;
468             // TODO: b/162346934 This a compromise way to bypass the motion
469             // awareness delay
470             if ((timeoutMs > VIBRATION_MOTION_TIME_THRESHOLD) && (!motionAwareness())) {
471                 return on(timeoutMs, RTP_MODE, mSteadyConfig, 2);
472             }
473         } else if (temperature < TEMP_LOWER_BOUND) {
474             mSteadyConfig->odClamp = &STEADY_VOLTAGE_LOWER_BOUND;
475             mSteadyConfig->olLraPeriod = mSteadyOlLraPeriodShift;
476         }
477     }
478 
479     return on(timeoutMs, RTP_MODE, mSteadyConfig, 0);
480 }
481 
off()482 ndk::ScopedAStatus Vibrator::off() {
483     ATRACE_NAME("Vibrator::off");
484     if (!mHwApi->setActivate(0)) {
485         ALOGE("Failed to turn vibrator off (%d): %s", errno, strerror(errno));
486         return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
487     }
488     return ndk::ScopedAStatus::ok();
489 }
490 
setAmplitude(float amplitude)491 ndk::ScopedAStatus Vibrator::setAmplitude(float amplitude) {
492     ATRACE_NAME("Vibrator::setAmplitude");
493     if (amplitude <= 0.0f || amplitude > 1.0f) {
494         return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
495     }
496 
497     int32_t rtp_input = std::round(amplitude * (MAX_RTP_INPUT - MIN_RTP_INPUT) + MIN_RTP_INPUT);
498 
499     if (!mHwApi->setRtpInput(rtp_input)) {
500         ALOGE("Failed to set amplitude (%d): %s", errno, strerror(errno));
501         return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
502     }
503 
504     return ndk::ScopedAStatus::ok();
505 }
506 
setExternalControl(bool enabled)507 ndk::ScopedAStatus Vibrator::setExternalControl(bool enabled) {
508     ATRACE_NAME("Vibrator::setExternalControl");
509     ALOGE("Not support in DRV2624 solution, %d", enabled);
510     return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
511 }
512 
dump(int fd,const char ** args,uint32_t numArgs)513 binder_status_t Vibrator::dump(int fd, const char **args, uint32_t numArgs) {
514     if (fd < 0) {
515         ALOGE("Called debug() with invalid fd.");
516         return STATUS_OK;
517     }
518 
519     (void)args;
520     (void)numArgs;
521 
522     dprintf(fd, "AIDL:\n");
523 
524     dprintf(fd, "  Close Loop Thresh: %" PRIu32 "\n", mCloseLoopThreshold);
525     if (mSteadyConfig) {
526         dprintf(fd, "  Steady Shape: %" PRIu32 "\n", mSteadyConfig->shape);
527         dprintf(fd, "  Steady OD Clamp: %" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
528                 mSteadyConfig->odClamp[0], mSteadyConfig->odClamp[1], mSteadyConfig->odClamp[2]);
529         dprintf(fd, "  Steady OL LRA Period: %" PRIu32 "\n", mSteadyConfig->olLraPeriod);
530     }
531     if (mEffectConfig) {
532         dprintf(fd, "  Effect Shape: %" PRIu32 "\n", mEffectConfig->shape);
533         dprintf(fd,
534                 "  Effect OD Clamp: %" PRIu32 " %" PRIu32 " %" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
535                 mEffectConfig->odClamp[0], mEffectConfig->odClamp[1], mEffectConfig->odClamp[2],
536                 mEffectConfig->odClamp[3], mEffectConfig->odClamp[4]);
537         dprintf(fd, "  Effect OL LRA Period: %" PRIu32 "\n", mEffectConfig->olLraPeriod);
538     }
539     dprintf(fd, "  Click Duration: %" PRIu32 "\n", mClickDuration);
540     dprintf(fd, "  Tick Duration: %" PRIu32 "\n", mTickDuration);
541     dprintf(fd, "  Double Click Duration: %" PRIu32 "\n", mDoubleClickDuration);
542     dprintf(fd, "  Heavy Click Duration: %" PRIu32 "\n", mHeavyClickDuration);
543 
544     dprintf(fd, "\n");
545 
546     mHwApi->debug(fd);
547 
548     dprintf(fd, "\n");
549 
550     mHwCal->debug(fd);
551 
552     fsync(fd);
553     return STATUS_OK;
554 }
555 
getSupportedEffects(std::vector<Effect> * _aidl_return)556 ndk::ScopedAStatus Vibrator::getSupportedEffects(std::vector<Effect> *_aidl_return) {
557     *_aidl_return = {Effect::TEXTURE_TICK, Effect::TICK, Effect::CLICK, Effect::HEAVY_CLICK,
558                      Effect::DOUBLE_CLICK};
559     return ndk::ScopedAStatus::ok();
560 }
561 
perform(Effect effect,EffectStrength strength,const std::shared_ptr<IVibratorCallback> & callback,int32_t * _aidl_return)562 ndk::ScopedAStatus Vibrator::perform(Effect effect, EffectStrength strength,
563                                      const std::shared_ptr<IVibratorCallback> &callback,
564                                      int32_t *_aidl_return) {
565     ATRACE_NAME("Vibrator::perform");
566     ndk::ScopedAStatus status;
567 
568     if (callback) {
569         status = ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
570     } else {
571         status = performEffect(effect, strength, _aidl_return);
572     }
573 
574     return status;
575 }
576 
performEffect(Effect effect,EffectStrength strength,int32_t * outTimeMs)577 ndk::ScopedAStatus Vibrator::performEffect(Effect effect, EffectStrength strength,
578                                            int32_t *outTimeMs) {
579     ndk::ScopedAStatus status;
580     uint32_t timeMS;
581     int8_t volOffset;
582 
583     switch (strength) {
584         case EffectStrength::LIGHT:
585             volOffset = 0;
586             break;
587         case EffectStrength::MEDIUM:
588             volOffset = 1;
589             break;
590         case EffectStrength::STRONG:
591             volOffset = 1;
592             break;
593         default:
594             return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
595             break;
596     }
597 
598     switch (effect) {
599         case Effect::TEXTURE_TICK:
600             mHwApi->setSequencer(WAVEFORM_TICK_EFFECT_SEQ);
601             timeMS = mTickDuration;
602             volOffset = TEXTURE_TICK;
603             break;
604         case Effect::CLICK:
605             mHwApi->setSequencer(WAVEFORM_CLICK_EFFECT_SEQ);
606             timeMS = mClickDuration;
607             volOffset += CLICK;
608             break;
609         case Effect::DOUBLE_CLICK:
610             mHwApi->setSequencer(WAVEFORM_DOUBLE_CLICK_EFFECT_SEQ);
611             timeMS = mDoubleClickDuration;
612             volOffset += CLICK;
613             break;
614         case Effect::TICK:
615             mHwApi->setSequencer(WAVEFORM_TICK_EFFECT_SEQ);
616             timeMS = mTickDuration;
617             volOffset += TICK;
618             break;
619         case Effect::HEAVY_CLICK:
620             mHwApi->setSequencer(WAVEFORM_HEAVY_CLICK_EFFECT_SEQ);
621             timeMS = mHeavyClickDuration;
622             volOffset += HEAVY_CLICK;
623             break;
624         default:
625             return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
626     }
627     status = on(timeMS, WAVEFORM_MODE, mEffectConfig, volOffset);
628     if (!status.isOk()) {
629         return status;
630     }
631 
632     *outTimeMs = timeMS;
633 
634     return ndk::ScopedAStatus::ok();
635 }
636 
getSupportedAlwaysOnEffects(std::vector<Effect> *)637 ndk::ScopedAStatus Vibrator::getSupportedAlwaysOnEffects(std::vector<Effect> * /*_aidl_return*/) {
638     return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
639 }
640 
alwaysOnEnable(int32_t,Effect,EffectStrength)641 ndk::ScopedAStatus Vibrator::alwaysOnEnable(int32_t /*id*/, Effect /*effect*/,
642                                             EffectStrength /*strength*/) {
643     return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
644 }
alwaysOnDisable(int32_t)645 ndk::ScopedAStatus Vibrator::alwaysOnDisable(int32_t /*id*/) {
646     return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
647 }
648 
getCompositionDelayMax(int32_t *)649 ndk::ScopedAStatus Vibrator::getCompositionDelayMax(int32_t * /*maxDelayMs*/) {
650     return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
651 }
652 
getCompositionSizeMax(int32_t *)653 ndk::ScopedAStatus Vibrator::getCompositionSizeMax(int32_t * /*maxSize*/) {
654     return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
655 }
656 
getSupportedPrimitives(std::vector<CompositePrimitive> *)657 ndk::ScopedAStatus Vibrator::getSupportedPrimitives(std::vector<CompositePrimitive> * /*supported*/) {
658     return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
659 }
660 
getPrimitiveDuration(CompositePrimitive,int32_t *)661 ndk::ScopedAStatus Vibrator::getPrimitiveDuration(CompositePrimitive /*primitive*/,
662                                                   int32_t * /*durationMs*/) {
663     return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
664 }
665 
compose(const std::vector<CompositeEffect> &,const std::shared_ptr<IVibratorCallback> &)666 ndk::ScopedAStatus Vibrator::compose(const std::vector<CompositeEffect> & /*composite*/,
667                                      const std::shared_ptr<IVibratorCallback> & /*callback*/) {
668     return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION);
669 }
670 
671 }  // namespace vibrator
672 }  // namespace hardware
673 }  // namespace android
674 }  // namespace aidl
675