• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /**
18  * This class is a simple simulation of a typical CMOS cellphone imager chip,
19  * which outputs 12-bit Bayer-mosaic raw images.
20  *
21  * Unlike most real image sensors, this one's native color space is linear sRGB.
22  *
23  * The sensor is abstracted as operating as a pipeline 3 stages deep;
24  * conceptually, each frame to be captured goes through these three stages. The
25  * processing step for the sensor is marked off by vertical sync signals, which
26  * indicate the start of readout of the oldest frame. The interval between
27  * processing steps depends on the frame duration of the frame currently being
28  * captured. The stages are 1) configure, 2) capture, and 3) readout. During
29  * configuration, the sensor's registers for settings such as exposure time,
30  * frame duration, and gain are set for the next frame to be captured. In stage
31  * 2, the image data for the frame is actually captured by the sensor. Finally,
32  * in stage 3, the just-captured data is read out and sent to the rest of the
33  * system.
34  *
35  * The sensor is assumed to be rolling-shutter, so low-numbered rows of the
36  * sensor are exposed earlier in time than larger-numbered rows, with the time
37  * offset between each row being equal to the row readout time.
38  *
39  * The characteristics of this sensor don't correspond to any actual sensor,
40  * but are not far off typical sensors.
41  *
42  * Example timing diagram, with three frames:
43  *  Frame 0-1: Frame duration 50 ms, exposure time 20 ms.
44  *  Frame   2: Frame duration 75 ms, exposure time 65 ms.
45  * Legend:
46  *   C = update sensor registers for frame
47  *   v = row in reset (vertical blanking interval)
48  *   E = row capturing image data
49  *   R = row being read out
50  *   | = vertical sync signal
51  *time(ms)|   0          55        105       155            230     270
52  * Frame 0|   :configure : capture : readout :              :       :
53  *  Row # | ..|CCCC______|_________|_________|              :       :
54  *      0 |   :\          \vvvvvEEEER         \             :       :
55  *    500 |   : \          \vvvvvEEEER         \            :       :
56  *   1000 |   :  \          \vvvvvEEEER         \           :       :
57  *   1500 |   :   \          \vvvvvEEEER         \          :       :
58  *   2000 |   :    \__________\vvvvvEEEER_________\         :       :
59  * Frame 1|   :           configure  capture      readout   :       :
60  *  Row # |   :          |CCCC_____|_________|______________|       :
61  *      0 |   :          :\         \vvvvvEEEER              \      :
62  *    500 |   :          : \         \vvvvvEEEER              \     :
63  *   1000 |   :          :  \         \vvvvvEEEER              \    :
64  *   1500 |   :          :   \         \vvvvvEEEER              \   :
65  *   2000 |   :          :    \_________\vvvvvEEEER______________\  :
66  * Frame 2|   :          :          configure     capture    readout:
67  *  Row # |   :          :         |CCCC_____|______________|_______|...
68  *      0 |   :          :         :\         \vEEEEEEEEEEEEER       \
69  *    500 |   :          :         : \         \vEEEEEEEEEEEEER       \
70  *   1000 |   :          :         :  \         \vEEEEEEEEEEEEER       \
71  *   1500 |   :          :         :   \         \vEEEEEEEEEEEEER       \
72  *   2000 |   :          :         :    \_________\vEEEEEEEEEEEEER_______\
73  */
74 
75 #ifndef HW_EMULATOR_CAMERA2_SENSOR_H
76 #define HW_EMULATOR_CAMERA2_SENSOR_H
77 
78 #include "utils/Mutex.h"
79 #include "utils/Thread.h"
80 #include "utils/Timers.h"
81 
82 #include "Base.h"
83 #include "Scene.h"
84 
85 namespace android {
86 
87 class EmulatedFakeCamera2;
88 
89 class Sensor : private Thread, public virtual RefBase {
90  public:
91   // width: Width of pixel array
92   // height: Height of pixel array
93   Sensor(uint32_t width, uint32_t height);
94   ~Sensor();
95 
96   /*
97    * Power control
98    */
99 
100   status_t startUp();
101   status_t shutDown();
102 
103   /*
104    * Access to scene
105    */
106   Scene &getScene();
107 
108   /*
109    * Controls that can be updated every frame
110    */
111 
112   void setExposureTime(uint64_t ns);
113   void setFrameDuration(uint64_t ns);
114   void setSensitivity(uint32_t gain);
115   // Buffer must be at least stride*height*2 bytes in size
116   void setDestinationBuffers(Buffers *buffers);
117   // To simplify tracking sensor's current frame
118   void setFrameNumber(uint32_t frameNumber);
119 
120   /*
121    * Controls that cause reconfiguration delay
122    */
123 
124   void setBinning(int horizontalFactor, int verticalFactor);
125 
126   /*
127    * Synchronizing with sensor operation (vertical sync)
128    */
129 
130   // Wait until the sensor outputs its next vertical sync signal, meaning it
131   // is starting readout of its latest frame of data. Returns true if vertical
132   // sync is signaled, false if the wait timed out.
133   bool waitForVSync(nsecs_t reltime);
134 
135   // Wait until a new frame has been read out, and then return the time
136   // capture started.  May return immediately if a new frame has been pushed
137   // since the last wait for a new frame. Returns true if new frame is
138   // returned, false if timed out.
139   bool waitForNewFrame(nsecs_t reltime, nsecs_t *captureTime);
140 
141   /*
142    * Interrupt event servicing from the sensor. Only triggers for sensor
143    * cycles that have valid buffers to write to.
144    */
145   struct SensorListener {
146     enum Event {
147       EXPOSURE_START,  // Start of exposure
148     };
149 
150     virtual void onSensorEvent(uint32_t frameNumber, Event e,
151                                nsecs_t timestamp) = 0;
152     virtual ~SensorListener();
153   };
154 
155   void setSensorListener(SensorListener *listener);
156 
157   /**
158    * Static sensor characteristics
159    */
160   const uint32_t mResolution[2];
161   const uint32_t mActiveArray[4];
162 
163   static const nsecs_t kExposureTimeRange[2];
164   static const nsecs_t kFrameDurationRange[2];
165   static const nsecs_t kMinVerticalBlank;
166 
167   static const uint8_t kColorFilterArrangement;
168 
169   // Output image data characteristics
170   static const uint32_t kMaxRawValue;
171   static const uint32_t kBlackLevel;
172   // Sensor sensitivity, approximate
173 
174   static const float kSaturationVoltage;
175   static const uint32_t kSaturationElectrons;
176   static const float kVoltsPerLuxSecond;
177   static const float kElectronsPerLuxSecond;
178 
179   static const float kBaseGainFactor;
180 
181   static const float kReadNoiseStddevBeforeGain;  // In electrons
182   static const float kReadNoiseStddevAfterGain;   // In raw digital units
183   static const float kReadNoiseVarBeforeGain;
184   static const float kReadNoiseVarAfterGain;
185 
186   // While each row has to read out, reset, and then expose, the (reset +
187   // expose) sequence can be overlapped by other row readouts, so the final
188   // minimum frame duration is purely a function of row readout time, at least
189   // if there's a reasonable number of rows.
190   const nsecs_t mRowReadoutTime;
191 
192   static const int32_t kSensitivityRange[2];
193   static const uint32_t kDefaultSensitivity;
194 
195  private:
196   Mutex mControlMutex;  // Lock before accessing control parameters
197   // Start of control parameters
198   Condition mVSync;
199   bool mGotVSync;
200   uint64_t mExposureTime;
201   uint64_t mFrameDuration;
202   uint32_t mGainFactor;
203   Buffers *mNextBuffers;
204   uint32_t mFrameNumber;
205 
206   // End of control parameters
207 
208   Mutex mReadoutMutex;  // Lock before accessing readout variables
209   // Start of readout variables
210   Condition mReadoutAvailable;
211   Condition mReadoutComplete;
212   Buffers *mCapturedBuffers;
213   nsecs_t mCaptureTime;
214   SensorListener *mListener;
215   // End of readout variables
216 
217   // Time of sensor startup, used for simulation zero-time point
218   nsecs_t mStartupTime;
219 
220   /**
221    * Inherited Thread virtual overrides, and members only used by the
222    * processing thread
223    */
224  private:
225   virtual status_t readyToRun();
226 
227   virtual bool threadLoop();
228 
229   nsecs_t mNextCaptureTime;
230   Buffers *mNextCapturedBuffers;
231 
232   Scene mScene;
233 
234   void captureRaw(uint8_t *img, uint32_t gain, uint32_t stride);
235   void captureRGBA(uint8_t *img, uint32_t gain, uint32_t stride);
236   void captureRGB(uint8_t *img, uint32_t gain, uint32_t stride);
237   void captureNV21(uint8_t *img, uint32_t gain, uint32_t stride);
238   void captureDepth(uint8_t *img, uint32_t gain, uint32_t stride);
239   void captureDepthCloud(uint8_t *img);
240 };
241 
242 }  // namespace android
243 
244 #endif  // HW_EMULATOR_CAMERA2_SENSOR_H
245