• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /** @file
2 
3   PCI Root Bridge Io Protocol code.
4 
5 Copyright (c) 1999 - 2016, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution.  The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10 
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13 
14 **/
15 
16 #include "PciHostBridge.h"
17 #include "PciRootBridge.h"
18 #include "PciHostResource.h"
19 
20 #define NO_MAPPING  (VOID *) (UINTN) -1
21 
22 //
23 // Lookup table for increment values based on transfer widths
24 //
25 UINT8 mInStride[] = {
26   1, // EfiPciWidthUint8
27   2, // EfiPciWidthUint16
28   4, // EfiPciWidthUint32
29   8, // EfiPciWidthUint64
30   0, // EfiPciWidthFifoUint8
31   0, // EfiPciWidthFifoUint16
32   0, // EfiPciWidthFifoUint32
33   0, // EfiPciWidthFifoUint64
34   1, // EfiPciWidthFillUint8
35   2, // EfiPciWidthFillUint16
36   4, // EfiPciWidthFillUint32
37   8  // EfiPciWidthFillUint64
38 };
39 
40 //
41 // Lookup table for increment values based on transfer widths
42 //
43 UINT8 mOutStride[] = {
44   1, // EfiPciWidthUint8
45   2, // EfiPciWidthUint16
46   4, // EfiPciWidthUint32
47   8, // EfiPciWidthUint64
48   1, // EfiPciWidthFifoUint8
49   2, // EfiPciWidthFifoUint16
50   4, // EfiPciWidthFifoUint32
51   8, // EfiPciWidthFifoUint64
52   0, // EfiPciWidthFillUint8
53   0, // EfiPciWidthFillUint16
54   0, // EfiPciWidthFillUint32
55   0  // EfiPciWidthFillUint64
56 };
57 
58 /**
59   Construct the Pci Root Bridge instance.
60 
61   @param Bridge            The root bridge instance.
62 
63   @return The pointer to PCI_ROOT_BRIDGE_INSTANCE just created
64           or NULL if creation fails.
65 **/
66 PCI_ROOT_BRIDGE_INSTANCE *
CreateRootBridge(IN PCI_ROOT_BRIDGE * Bridge)67 CreateRootBridge (
68   IN PCI_ROOT_BRIDGE       *Bridge
69   )
70 {
71   PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
72   PCI_RESOURCE_TYPE        Index;
73   CHAR16                   *DevicePathStr;
74   PCI_ROOT_BRIDGE_APERTURE *Aperture;
75 
76   DevicePathStr = NULL;
77 
78   DEBUG ((EFI_D_INFO, "RootBridge: "));
79   DEBUG ((EFI_D_INFO, "%s\n", DevicePathStr = ConvertDevicePathToText (Bridge->DevicePath, FALSE, FALSE)));
80   DEBUG ((EFI_D_INFO, "  Support/Attr: %lx / %lx\n", Bridge->Supports, Bridge->Attributes));
81   DEBUG ((EFI_D_INFO, "    DmaAbove4G: %s\n", Bridge->DmaAbove4G ? L"Yes" : L"No"));
82   DEBUG ((EFI_D_INFO, "NoExtConfSpace: %s\n", Bridge->NoExtendedConfigSpace ? L"Yes" : L"No"));
83   DEBUG ((EFI_D_INFO, "     AllocAttr: %lx (%s%s)\n", Bridge->AllocationAttributes,
84           (Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM) != 0 ? L"CombineMemPMem " : L"",
85           (Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_MEM64_DECODE) != 0 ? L"Mem64Decode" : L""
86           ));
87   DEBUG ((EFI_D_INFO, "           Bus: %lx - %lx\n", Bridge->Bus.Base, Bridge->Bus.Limit));
88   DEBUG ((EFI_D_INFO, "            Io: %lx - %lx\n", Bridge->Io.Base, Bridge->Io.Limit));
89   DEBUG ((EFI_D_INFO, "           Mem: %lx - %lx\n", Bridge->Mem.Base, Bridge->Mem.Limit));
90   DEBUG ((EFI_D_INFO, "    MemAbove4G: %lx - %lx\n", Bridge->MemAbove4G.Base, Bridge->MemAbove4G.Limit));
91   DEBUG ((EFI_D_INFO, "          PMem: %lx - %lx\n", Bridge->PMem.Base, Bridge->PMem.Limit));
92   DEBUG ((EFI_D_INFO, "   PMemAbove4G: %lx - %lx\n", Bridge->PMemAbove4G.Base, Bridge->PMemAbove4G.Limit));
93 
94   //
95   // Make sure Mem and MemAbove4G apertures are valid
96   //
97   if (Bridge->Mem.Base <= Bridge->Mem.Limit) {
98     ASSERT (Bridge->Mem.Limit < SIZE_4GB);
99     if (Bridge->Mem.Limit >= SIZE_4GB) {
100       return NULL;
101     }
102   }
103   if (Bridge->MemAbove4G.Base <= Bridge->MemAbove4G.Limit) {
104     ASSERT (Bridge->MemAbove4G.Base >= SIZE_4GB);
105     if (Bridge->MemAbove4G.Base < SIZE_4GB) {
106       return NULL;
107     }
108   }
109   if (Bridge->PMem.Base <= Bridge->PMem.Limit) {
110     ASSERT (Bridge->PMem.Limit < SIZE_4GB);
111     if (Bridge->PMem.Limit >= SIZE_4GB) {
112       return NULL;
113     }
114   }
115   if (Bridge->PMemAbove4G.Base <= Bridge->PMemAbove4G.Limit) {
116     ASSERT (Bridge->PMemAbove4G.Base >= SIZE_4GB);
117     if (Bridge->PMemAbove4G.Base < SIZE_4GB) {
118       return NULL;
119     }
120   }
121 
122   //
123   // Ignore AllocationAttributes when resources were already assigned.
124   //
125   if (!Bridge->ResourceAssigned) {
126     if ((Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM) != 0) {
127       //
128       // If this bit is set, then the PCI Root Bridge does not
129       // support separate windows for Non-prefetchable and Prefetchable
130       // memory.
131       //
132       ASSERT (Bridge->PMem.Base > Bridge->PMem.Limit);
133       ASSERT (Bridge->PMemAbove4G.Base > Bridge->PMemAbove4G.Limit);
134       if ((Bridge->PMem.Base <= Bridge->PMem.Limit) ||
135           (Bridge->PMemAbove4G.Base <= Bridge->PMemAbove4G.Limit)
136           ) {
137         return NULL;
138       }
139     }
140 
141     if ((Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_MEM64_DECODE) == 0) {
142       //
143       // If this bit is not set, then the PCI Root Bridge does not support
144       // 64 bit memory windows.
145       //
146       ASSERT (Bridge->MemAbove4G.Base > Bridge->MemAbove4G.Limit);
147       ASSERT (Bridge->PMemAbove4G.Base > Bridge->PMemAbove4G.Limit);
148       if ((Bridge->MemAbove4G.Base <= Bridge->MemAbove4G.Limit) ||
149           (Bridge->PMemAbove4G.Base <= Bridge->PMemAbove4G.Limit)
150           ) {
151         return NULL;
152       }
153     }
154   }
155 
156   RootBridge = AllocateZeroPool (sizeof (PCI_ROOT_BRIDGE_INSTANCE));
157   ASSERT (RootBridge != NULL);
158 
159   RootBridge->Signature = PCI_ROOT_BRIDGE_SIGNATURE;
160   RootBridge->Supports = Bridge->Supports;
161   RootBridge->Attributes = Bridge->Attributes;
162   RootBridge->DmaAbove4G = Bridge->DmaAbove4G;
163   RootBridge->NoExtendedConfigSpace = Bridge->NoExtendedConfigSpace;
164   RootBridge->AllocationAttributes = Bridge->AllocationAttributes;
165   RootBridge->DevicePath = DuplicateDevicePath (Bridge->DevicePath);
166   RootBridge->DevicePathStr = DevicePathStr;
167   RootBridge->ConfigBuffer = AllocatePool (
168     TypeMax * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR)
169     );
170   ASSERT (RootBridge->ConfigBuffer != NULL);
171   InitializeListHead (&RootBridge->Maps);
172 
173   CopyMem (&RootBridge->Bus, &Bridge->Bus, sizeof (PCI_ROOT_BRIDGE_APERTURE));
174   CopyMem (&RootBridge->Io, &Bridge->Io, sizeof (PCI_ROOT_BRIDGE_APERTURE));
175   CopyMem (&RootBridge->Mem, &Bridge->Mem, sizeof (PCI_ROOT_BRIDGE_APERTURE));
176   CopyMem (&RootBridge->MemAbove4G, &Bridge->MemAbove4G, sizeof (PCI_ROOT_BRIDGE_APERTURE));
177   CopyMem (&RootBridge->PMem, &Bridge->PMem, sizeof (PCI_ROOT_BRIDGE_APERTURE));
178   CopyMem (&RootBridge->PMemAbove4G, &Bridge->PMemAbove4G, sizeof (PCI_ROOT_BRIDGE_APERTURE));
179 
180   for (Index = TypeIo; Index < TypeMax; Index++) {
181     switch (Index) {
182     case TypeBus:
183       Aperture = &RootBridge->Bus;
184       break;
185     case TypeIo:
186       Aperture = &RootBridge->Io;
187       break;
188     case TypeMem32:
189       Aperture = &RootBridge->Mem;
190       break;
191     case TypeMem64:
192       Aperture = &RootBridge->MemAbove4G;
193       break;
194     case TypePMem32:
195       Aperture = &RootBridge->PMem;
196       break;
197     case TypePMem64:
198       Aperture = &RootBridge->PMemAbove4G;
199       break;
200     default:
201       ASSERT (FALSE);
202       Aperture = NULL;
203       break;
204     }
205     RootBridge->ResAllocNode[Index].Type     = Index;
206     if (Bridge->ResourceAssigned && (Aperture->Limit >= Aperture->Base)) {
207       RootBridge->ResAllocNode[Index].Base   = Aperture->Base;
208       RootBridge->ResAllocNode[Index].Length = Aperture->Limit - Aperture->Base + 1;
209       RootBridge->ResAllocNode[Index].Status = ResAllocated;
210     } else {
211       RootBridge->ResAllocNode[Index].Base   = 0;
212       RootBridge->ResAllocNode[Index].Length = 0;
213       RootBridge->ResAllocNode[Index].Status = ResNone;
214     }
215   }
216 
217   RootBridge->RootBridgeIo.SegmentNumber  = Bridge->Segment;
218   RootBridge->RootBridgeIo.PollMem        = RootBridgeIoPollMem;
219   RootBridge->RootBridgeIo.PollIo         = RootBridgeIoPollIo;
220   RootBridge->RootBridgeIo.Mem.Read       = RootBridgeIoMemRead;
221   RootBridge->RootBridgeIo.Mem.Write      = RootBridgeIoMemWrite;
222   RootBridge->RootBridgeIo.Io.Read        = RootBridgeIoIoRead;
223   RootBridge->RootBridgeIo.Io.Write       = RootBridgeIoIoWrite;
224   RootBridge->RootBridgeIo.CopyMem        = RootBridgeIoCopyMem;
225   RootBridge->RootBridgeIo.Pci.Read       = RootBridgeIoPciRead;
226   RootBridge->RootBridgeIo.Pci.Write      = RootBridgeIoPciWrite;
227   RootBridge->RootBridgeIo.Map            = RootBridgeIoMap;
228   RootBridge->RootBridgeIo.Unmap          = RootBridgeIoUnmap;
229   RootBridge->RootBridgeIo.AllocateBuffer = RootBridgeIoAllocateBuffer;
230   RootBridge->RootBridgeIo.FreeBuffer     = RootBridgeIoFreeBuffer;
231   RootBridge->RootBridgeIo.Flush          = RootBridgeIoFlush;
232   RootBridge->RootBridgeIo.GetAttributes  = RootBridgeIoGetAttributes;
233   RootBridge->RootBridgeIo.SetAttributes  = RootBridgeIoSetAttributes;
234   RootBridge->RootBridgeIo.Configuration  = RootBridgeIoConfiguration;
235 
236   return RootBridge;
237 }
238 
239 /**
240   Check parameters for IO,MMIO,PCI read/write services of PCI Root Bridge IO.
241 
242   The I/O operations are carried out exactly as requested. The caller is
243   responsible for satisfying any alignment and I/O width restrictions that a PI
244   System on a platform might require. For example on some platforms, width
245   requests of EfiCpuIoWidthUint64 do not work. Misaligned buffers, on the other
246   hand, will be handled by the driver.
247 
248   @param[in] This           A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
249 
250   @param[in] OperationType  I/O operation type: IO/MMIO/PCI.
251 
252   @param[in] Width          Signifies the width of the I/O or Memory operation.
253 
254   @param[in] Address        The base address of the I/O operation.
255 
256   @param[in] Count          The number of I/O operations to perform. The number
257                             of bytes moved is Width size * Count, starting at
258                             Address.
259 
260   @param[in] Buffer         For read operations, the destination buffer to
261                             store the results. For write operations, the source
262                             buffer from which to write data.
263 
264   @retval EFI_SUCCESS            The parameters for this request pass the
265                                  checks.
266 
267   @retval EFI_INVALID_PARAMETER  Width is invalid for this PI system.
268 
269   @retval EFI_INVALID_PARAMETER  Buffer is NULL.
270 
271   @retval EFI_UNSUPPORTED        The Buffer is not aligned for the given Width.
272 
273   @retval EFI_UNSUPPORTED        The address range specified by Address, Width,
274                                  and Count is not valid for this PI system.
275 **/
276 EFI_STATUS
RootBridgeIoCheckParameter(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN OPERATION_TYPE OperationType,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 Address,IN UINTN Count,IN VOID * Buffer)277 RootBridgeIoCheckParameter (
278   IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL        *This,
279   IN OPERATION_TYPE                         OperationType,
280   IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH  Width,
281   IN UINT64                                 Address,
282   IN UINTN                                  Count,
283   IN VOID                                   *Buffer
284   )
285 {
286   PCI_ROOT_BRIDGE_INSTANCE                     *RootBridge;
287   EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS  *PciRbAddr;
288   UINT64                                       Base;
289   UINT64                                       Limit;
290   UINT32                                       Size;
291 
292   //
293   // Check to see if Buffer is NULL
294   //
295   if (Buffer == NULL) {
296     return EFI_INVALID_PARAMETER;
297   }
298 
299   //
300   // Check to see if Width is in the valid range
301   //
302   if ((UINT32) Width >= EfiPciWidthMaximum) {
303     return EFI_INVALID_PARAMETER;
304   }
305 
306   //
307   // For FIFO type, the target address won't increase during the access,
308   // so treat Count as 1
309   //
310   if (Width >= EfiPciWidthFifoUint8 && Width <= EfiPciWidthFifoUint64) {
311     Count = 1;
312   }
313 
314   Width = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH) (Width & 0x03);
315   Size  = 1 << Width;
316 
317   //
318   // Check to see if Address is aligned
319   //
320   if ((Address & (Size - 1)) != 0) {
321     return EFI_UNSUPPORTED;
322   }
323 
324   RootBridge = ROOT_BRIDGE_FROM_THIS (This);
325 
326   //
327   // Check to see if any address associated with this transfer exceeds the
328   // maximum allowed address.  The maximum address implied by the parameters
329   // passed in is Address + Size * Count.  If the following condition is met,
330   // then the transfer is not supported.
331   //
332   //    Address + Size * Count > Limit + 1
333   //
334   // Since Limit can be the maximum integer value supported by the CPU and
335   // Count can also be the maximum integer value supported by the CPU, this
336   // range check must be adjusted to avoid all oveflow conditions.
337   //
338   if (OperationType == IoOperation) {
339     //
340     // Allow Legacy IO access
341     //
342     if (Address + MultU64x32 (Count, Size) <= 0x1000) {
343       if ((RootBridge->Attributes & (
344            EFI_PCI_ATTRIBUTE_ISA_IO | EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO | EFI_PCI_ATTRIBUTE_VGA_IO |
345            EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO | EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO |
346            EFI_PCI_ATTRIBUTE_ISA_IO_16 | EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 | EFI_PCI_ATTRIBUTE_VGA_IO_16)) != 0) {
347         return EFI_SUCCESS;
348       }
349     }
350     Base = RootBridge->Io.Base;
351     Limit = RootBridge->Io.Limit;
352   } else if (OperationType == MemOperation) {
353     //
354     // Allow Legacy MMIO access
355     //
356     if ((Address >= 0xA0000) && (Address + MultU64x32 (Count, Size)) <= 0xC0000) {
357       if ((RootBridge->Attributes & EFI_PCI_ATTRIBUTE_VGA_MEMORY) != 0) {
358         return EFI_SUCCESS;
359       }
360     }
361     //
362     // By comparing the Address against Limit we know which range to be used
363     // for checking
364     //
365     if (Address + MultU64x32 (Count, Size) <= RootBridge->Mem.Limit + 1) {
366       Base = RootBridge->Mem.Base;
367       Limit = RootBridge->Mem.Limit;
368     } else {
369       Base = RootBridge->MemAbove4G.Base;
370       Limit = RootBridge->MemAbove4G.Limit;
371     }
372   } else {
373     PciRbAddr = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS*) &Address;
374     if (PciRbAddr->Bus < RootBridge->Bus.Base ||
375         PciRbAddr->Bus > RootBridge->Bus.Limit) {
376       return EFI_INVALID_PARAMETER;
377     }
378 
379     if (PciRbAddr->Device > PCI_MAX_DEVICE ||
380         PciRbAddr->Function > PCI_MAX_FUNC) {
381       return EFI_INVALID_PARAMETER;
382     }
383 
384     if (PciRbAddr->ExtendedRegister != 0) {
385       Address = PciRbAddr->ExtendedRegister;
386     } else {
387       Address = PciRbAddr->Register;
388     }
389     Base = 0;
390     Limit = RootBridge->NoExtendedConfigSpace ? 0xFF : 0xFFF;
391   }
392 
393   if (Address < Base) {
394       return EFI_INVALID_PARAMETER;
395   }
396 
397   if (Address + MultU64x32 (Count, Size) > Limit + 1) {
398     return EFI_INVALID_PARAMETER;
399   }
400 
401   return EFI_SUCCESS;
402 }
403 
404 /**
405   Polls an address in memory mapped I/O space until an exit condition is met,
406   or a timeout occurs.
407 
408   This function provides a standard way to poll a PCI memory location. A PCI
409   memory read operation is performed at the PCI memory address specified by
410   Address for the width specified by Width. The result of this PCI memory read
411   operation is stored in Result. This PCI memory read operation is repeated
412   until either a timeout of Delay 100 ns units has expired, or (Result & Mask)
413   is equal to Value.
414 
415   @param[in]   This      A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
416   @param[in]   Width     Signifies the width of the memory operations.
417   @param[in]   Address   The base address of the memory operations. The caller
418                          is responsible for aligning Address if required.
419   @param[in]   Mask      Mask used for the polling criteria. Bytes above Width
420                          in Mask are ignored. The bits in the bytes below Width
421                          which are zero in Mask are ignored when polling the
422                          memory address.
423   @param[in]   Value     The comparison value used for the polling exit
424                          criteria.
425   @param[in]   Delay     The number of 100 ns units to poll. Note that timer
426                          available may be of poorer granularity.
427   @param[out]  Result    Pointer to the last value read from the memory
428                          location.
429 
430   @retval EFI_SUCCESS            The last data returned from the access matched
431                                  the poll exit criteria.
432   @retval EFI_INVALID_PARAMETER  Width is invalid.
433   @retval EFI_INVALID_PARAMETER  Result is NULL.
434   @retval EFI_TIMEOUT            Delay expired before a match occurred.
435   @retval EFI_OUT_OF_RESOURCES   The request could not be completed due to a
436                                  lack of resources.
437 **/
438 EFI_STATUS
439 EFIAPI
RootBridgeIoPollMem(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 Address,IN UINT64 Mask,IN UINT64 Value,IN UINT64 Delay,OUT UINT64 * Result)440 RootBridgeIoPollMem (
441   IN  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL        *This,
442   IN  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH  Width,
443   IN  UINT64                                 Address,
444   IN  UINT64                                 Mask,
445   IN  UINT64                                 Value,
446   IN  UINT64                                 Delay,
447   OUT UINT64                                 *Result
448   )
449 {
450   EFI_STATUS  Status;
451   UINT64      NumberOfTicks;
452   UINT32      Remainder;
453 
454   if (Result == NULL) {
455     return EFI_INVALID_PARAMETER;
456   }
457 
458   if ((UINT32)Width > EfiPciWidthUint64) {
459     return EFI_INVALID_PARAMETER;
460   }
461 
462   //
463   // No matter what, always do a single poll.
464   //
465   Status = This->Mem.Read (This, Width, Address, 1, Result);
466   if (EFI_ERROR (Status)) {
467     return Status;
468   }
469 
470   if ((*Result & Mask) == Value) {
471     return EFI_SUCCESS;
472   }
473 
474   if (Delay == 0) {
475     return EFI_SUCCESS;
476 
477   } else {
478 
479     //
480     // Determine the proper # of metronome ticks to wait for polling the
481     // location.  The nuber of ticks is Roundup (Delay /
482     // mMetronome->TickPeriod)+1
483     // The "+1" to account for the possibility of the first tick being short
484     // because we started in the middle of a tick.
485     //
486     // BugBug: overriding mMetronome->TickPeriod with UINT32 until Metronome
487     // protocol definition is updated.
488     //
489     NumberOfTicks = DivU64x32Remainder (Delay, (UINT32) mMetronome->TickPeriod,
490                       &Remainder);
491     if (Remainder != 0) {
492       NumberOfTicks += 1;
493     }
494     NumberOfTicks += 1;
495 
496     while (NumberOfTicks != 0) {
497 
498       mMetronome->WaitForTick (mMetronome, 1);
499 
500       Status = This->Mem.Read (This, Width, Address, 1, Result);
501       if (EFI_ERROR (Status)) {
502         return Status;
503       }
504 
505       if ((*Result & Mask) == Value) {
506         return EFI_SUCCESS;
507       }
508 
509       NumberOfTicks -= 1;
510     }
511   }
512   return EFI_TIMEOUT;
513 }
514 
515 /**
516   Reads from the I/O space of a PCI Root Bridge. Returns when either the
517   polling exit criteria is satisfied or after a defined duration.
518 
519   This function provides a standard way to poll a PCI I/O location. A PCI I/O
520   read operation is performed at the PCI I/O address specified by Address for
521   the width specified by Width.
522   The result of this PCI I/O read operation is stored in Result. This PCI I/O
523   read operation is repeated until either a timeout of Delay 100 ns units has
524   expired, or (Result & Mask) is equal to Value.
525 
526   @param[in] This      A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
527   @param[in] Width     Signifies the width of the I/O operations.
528   @param[in] Address   The base address of the I/O operations. The caller is
529                        responsible for aligning Address if required.
530   @param[in] Mask      Mask used for the polling criteria. Bytes above Width in
531                        Mask are ignored. The bits in the bytes below Width
532                        which are zero in Mask are ignored when polling the I/O
533                        address.
534   @param[in] Value     The comparison value used for the polling exit criteria.
535   @param[in] Delay     The number of 100 ns units to poll. Note that timer
536                        available may be of poorer granularity.
537   @param[out] Result   Pointer to the last value read from the memory location.
538 
539   @retval EFI_SUCCESS            The last data returned from the access matched
540                                  the poll exit criteria.
541   @retval EFI_INVALID_PARAMETER  Width is invalid.
542   @retval EFI_INVALID_PARAMETER  Result is NULL.
543   @retval EFI_TIMEOUT            Delay expired before a match occurred.
544   @retval EFI_OUT_OF_RESOURCES   The request could not be completed due to a
545                                  lack of resources.
546 **/
547 EFI_STATUS
548 EFIAPI
RootBridgeIoPollIo(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 Address,IN UINT64 Mask,IN UINT64 Value,IN UINT64 Delay,OUT UINT64 * Result)549 RootBridgeIoPollIo (
550   IN  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL        *This,
551   IN  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH  Width,
552   IN  UINT64                                 Address,
553   IN  UINT64                                 Mask,
554   IN  UINT64                                 Value,
555   IN  UINT64                                 Delay,
556   OUT UINT64                                 *Result
557   )
558 {
559   EFI_STATUS  Status;
560   UINT64      NumberOfTicks;
561   UINT32      Remainder;
562 
563   //
564   // No matter what, always do a single poll.
565   //
566 
567   if (Result == NULL) {
568     return EFI_INVALID_PARAMETER;
569   }
570 
571   if ((UINT32)Width > EfiPciWidthUint64) {
572     return EFI_INVALID_PARAMETER;
573   }
574 
575   Status = This->Io.Read (This, Width, Address, 1, Result);
576   if (EFI_ERROR (Status)) {
577     return Status;
578   }
579   if ((*Result & Mask) == Value) {
580     return EFI_SUCCESS;
581   }
582 
583   if (Delay == 0) {
584     return EFI_SUCCESS;
585 
586   } else {
587 
588     //
589     // Determine the proper # of metronome ticks to wait for polling the
590     // location.  The number of ticks is Roundup (Delay /
591     // mMetronome->TickPeriod)+1
592     // The "+1" to account for the possibility of the first tick being short
593     // because we started in the middle of a tick.
594     //
595     NumberOfTicks = DivU64x32Remainder (Delay, (UINT32)mMetronome->TickPeriod,
596                       &Remainder);
597     if (Remainder != 0) {
598       NumberOfTicks += 1;
599     }
600     NumberOfTicks += 1;
601 
602     while (NumberOfTicks != 0) {
603 
604       mMetronome->WaitForTick (mMetronome, 1);
605 
606       Status = This->Io.Read (This, Width, Address, 1, Result);
607       if (EFI_ERROR (Status)) {
608         return Status;
609       }
610 
611       if ((*Result & Mask) == Value) {
612         return EFI_SUCCESS;
613       }
614 
615       NumberOfTicks -= 1;
616     }
617   }
618   return EFI_TIMEOUT;
619 }
620 
621 /**
622   Enables a PCI driver to access PCI controller registers in the PCI root
623   bridge memory space.
624 
625   The Mem.Read(), and Mem.Write() functions enable a driver to access PCI
626   controller registers in the PCI root bridge memory space.
627   The memory operations are carried out exactly as requested. The caller is
628   responsible for satisfying any alignment and memory width restrictions that a
629   PCI Root Bridge on a platform might require.
630 
631   @param[in]   This      A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
632   @param[in]   Width     Signifies the width of the memory operation.
633   @param[in]   Address   The base address of the memory operation. The caller
634                          is responsible for aligning the Address if required.
635   @param[in]   Count     The number of memory operations to perform. Bytes
636                          moved is Width size * Count, starting at Address.
637   @param[out]  Buffer    For read operations, the destination buffer to store
638                          the results. For write operations, the source buffer
639                          to write data from.
640 
641   @retval EFI_SUCCESS            The data was read from or written to the PCI
642                                  root bridge.
643   @retval EFI_INVALID_PARAMETER  Width is invalid for this PCI root bridge.
644   @retval EFI_INVALID_PARAMETER  Buffer is NULL.
645   @retval EFI_OUT_OF_RESOURCES   The request could not be completed due to a
646                                  lack of resources.
647 **/
648 EFI_STATUS
649 EFIAPI
RootBridgeIoMemRead(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 Address,IN UINTN Count,OUT VOID * Buffer)650 RootBridgeIoMemRead (
651   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL        *This,
652   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH  Width,
653   IN     UINT64                                 Address,
654   IN     UINTN                                  Count,
655   OUT    VOID                                   *Buffer
656   )
657 {
658   EFI_STATUS                             Status;
659 
660   Status = RootBridgeIoCheckParameter (This, MemOperation, Width, Address,
661                                        Count, Buffer);
662   if (EFI_ERROR (Status)) {
663     return Status;
664   }
665   return mCpuIo->Mem.Read (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
666 }
667 
668 /**
669   Enables a PCI driver to access PCI controller registers in the PCI root
670   bridge memory space.
671 
672   The Mem.Read(), and Mem.Write() functions enable a driver to access PCI
673   controller registers in the PCI root bridge memory space.
674   The memory operations are carried out exactly as requested. The caller is
675   responsible for satisfying any alignment and memory width restrictions that a
676   PCI Root Bridge on a platform might require.
677 
678   @param[in]   This      A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
679   @param[in]   Width     Signifies the width of the memory operation.
680   @param[in]   Address   The base address of the memory operation. The caller
681                          is responsible for aligning the Address if required.
682   @param[in]   Count     The number of memory operations to perform. Bytes
683                          moved is Width size * Count, starting at Address.
684   @param[in]   Buffer    For read operations, the destination buffer to store
685                          the results. For write operations, the source buffer
686                          to write data from.
687 
688   @retval EFI_SUCCESS            The data was read from or written to the PCI
689                                  root bridge.
690   @retval EFI_INVALID_PARAMETER  Width is invalid for this PCI root bridge.
691   @retval EFI_INVALID_PARAMETER  Buffer is NULL.
692   @retval EFI_OUT_OF_RESOURCES   The request could not be completed due to a
693                                  lack of resources.
694 **/
695 EFI_STATUS
696 EFIAPI
RootBridgeIoMemWrite(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 Address,IN UINTN Count,IN VOID * Buffer)697 RootBridgeIoMemWrite (
698   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL        *This,
699   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH  Width,
700   IN     UINT64                                 Address,
701   IN     UINTN                                  Count,
702   IN     VOID                                   *Buffer
703   )
704 {
705   EFI_STATUS                             Status;
706 
707   Status = RootBridgeIoCheckParameter (This, MemOperation, Width, Address,
708                                        Count, Buffer);
709   if (EFI_ERROR (Status)) {
710     return Status;
711   }
712   return mCpuIo->Mem.Write (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
713 }
714 
715 /**
716   Enables a PCI driver to access PCI controller registers in the PCI root
717   bridge I/O space.
718 
719   @param[in]   This        A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
720   @param[in]   Width       Signifies the width of the memory operations.
721   @param[in]   Address     The base address of the I/O operation. The caller is
722                            responsible for aligning the Address if required.
723   @param[in]   Count       The number of I/O operations to perform. Bytes moved
724                            is Width size * Count, starting at Address.
725   @param[out]  Buffer      For read operations, the destination buffer to store
726                            the results. For write operations, the source buffer
727                            to write data from.
728 
729   @retval EFI_SUCCESS              The data was read from or written to the PCI
730                                    root bridge.
731   @retval EFI_INVALID_PARAMETER    Width is invalid for this PCI root bridge.
732   @retval EFI_INVALID_PARAMETER    Buffer is NULL.
733   @retval EFI_OUT_OF_RESOURCES     The request could not be completed due to a
734                                    lack of resources.
735 **/
736 EFI_STATUS
737 EFIAPI
RootBridgeIoIoRead(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 Address,IN UINTN Count,OUT VOID * Buffer)738 RootBridgeIoIoRead (
739   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL        *This,
740   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH  Width,
741   IN     UINT64                                 Address,
742   IN     UINTN                                  Count,
743   OUT    VOID                                   *Buffer
744   )
745 {
746   EFI_STATUS                                    Status;
747   Status = RootBridgeIoCheckParameter (
748              This, IoOperation, Width,
749              Address, Count, Buffer
750              );
751   if (EFI_ERROR (Status)) {
752     return Status;
753   }
754   return mCpuIo->Io.Read (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
755 }
756 
757 /**
758   Enables a PCI driver to access PCI controller registers in the PCI root
759   bridge I/O space.
760 
761   @param[in]   This        A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
762   @param[in]   Width       Signifies the width of the memory operations.
763   @param[in]   Address     The base address of the I/O operation. The caller is
764                            responsible for aligning the Address if required.
765   @param[in]   Count       The number of I/O operations to perform. Bytes moved
766                            is Width size * Count, starting at Address.
767   @param[in]   Buffer      For read operations, the destination buffer to store
768                            the results. For write operations, the source buffer
769                            to write data from.
770 
771   @retval EFI_SUCCESS              The data was read from or written to the PCI
772                                    root bridge.
773   @retval EFI_INVALID_PARAMETER    Width is invalid for this PCI root bridge.
774   @retval EFI_INVALID_PARAMETER    Buffer is NULL.
775   @retval EFI_OUT_OF_RESOURCES     The request could not be completed due to a
776                                    lack of resources.
777 **/
778 EFI_STATUS
779 EFIAPI
RootBridgeIoIoWrite(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 Address,IN UINTN Count,IN VOID * Buffer)780 RootBridgeIoIoWrite (
781   IN       EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL         *This,
782   IN       EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH   Width,
783   IN       UINT64                                  Address,
784   IN       UINTN                                   Count,
785   IN       VOID                                    *Buffer
786   )
787 {
788   EFI_STATUS                                    Status;
789   Status = RootBridgeIoCheckParameter (
790              This, IoOperation, Width,
791              Address, Count, Buffer
792              );
793   if (EFI_ERROR (Status)) {
794     return Status;
795   }
796   return mCpuIo->Io.Write (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
797 }
798 
799 /**
800   Enables a PCI driver to copy one region of PCI root bridge memory space to
801   another region of PCI root bridge memory space.
802 
803   The CopyMem() function enables a PCI driver to copy one region of PCI root
804   bridge memory space to another region of PCI root bridge memory space. This
805   is especially useful for video scroll operation on a memory mapped video
806   buffer.
807   The memory operations are carried out exactly as requested. The caller is
808   responsible for satisfying any alignment and memory width restrictions that a
809   PCI root bridge on a platform might require.
810 
811   @param[in] This        A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
812                          instance.
813   @param[in] Width       Signifies the width of the memory operations.
814   @param[in] DestAddress The destination address of the memory operation. The
815                          caller is responsible for aligning the DestAddress if
816                          required.
817   @param[in] SrcAddress  The source address of the memory operation. The caller
818                          is responsible for aligning the SrcAddress if
819                          required.
820   @param[in] Count       The number of memory operations to perform. Bytes
821                          moved is Width size * Count, starting at DestAddress
822                          and SrcAddress.
823 
824   @retval  EFI_SUCCESS             The data was copied from one memory region
825                                    to another memory region.
826   @retval  EFI_INVALID_PARAMETER   Width is invalid for this PCI root bridge.
827   @retval  EFI_OUT_OF_RESOURCES    The request could not be completed due to a
828                                    lack of resources.
829 **/
830 EFI_STATUS
831 EFIAPI
RootBridgeIoCopyMem(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 DestAddress,IN UINT64 SrcAddress,IN UINTN Count)832 RootBridgeIoCopyMem (
833   IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL              *This,
834   IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH        Width,
835   IN UINT64                                       DestAddress,
836   IN UINT64                                       SrcAddress,
837   IN UINTN                                        Count
838   )
839 {
840   EFI_STATUS  Status;
841   BOOLEAN     Forward;
842   UINTN       Stride;
843   UINTN       Index;
844   UINT64      Result;
845 
846   if ((UINT32) Width > EfiPciWidthUint64) {
847     return EFI_INVALID_PARAMETER;
848   }
849 
850   if (DestAddress == SrcAddress) {
851     return EFI_SUCCESS;
852   }
853 
854   Stride = (UINTN) (1 << Width);
855 
856   Forward = TRUE;
857   if ((DestAddress > SrcAddress) &&
858       (DestAddress < (SrcAddress + Count * Stride))) {
859     Forward = FALSE;
860     SrcAddress = SrcAddress + (Count - 1) * Stride;
861     DestAddress = DestAddress + (Count - 1) * Stride;
862   }
863 
864   for (Index = 0; Index < Count; Index++) {
865     Status = RootBridgeIoMemRead (
866                This,
867                Width,
868                SrcAddress,
869                1,
870                &Result
871                );
872     if (EFI_ERROR (Status)) {
873       return Status;
874     }
875     Status = RootBridgeIoMemWrite (
876                This,
877                Width,
878                DestAddress,
879                1,
880                &Result
881                );
882     if (EFI_ERROR (Status)) {
883       return Status;
884     }
885     if (Forward) {
886       SrcAddress += Stride;
887       DestAddress += Stride;
888     } else {
889       SrcAddress -= Stride;
890       DestAddress -= Stride;
891     }
892   }
893   return EFI_SUCCESS;
894 }
895 
896 
897 /**
898   PCI configuration space access.
899 
900   @param This     A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
901   @param Read     TRUE indicating it's a read operation.
902   @param Width    Signifies the width of the memory operation.
903   @param Address  The address within the PCI configuration space
904                   for the PCI controller.
905   @param Count    The number of PCI configuration operations
906                   to perform.
907   @param Buffer   The destination buffer to store the results.
908 
909   @retval EFI_SUCCESS            The data was read/written from/to the PCI root bridge.
910   @retval EFI_INVALID_PARAMETER  Invalid parameters found.
911 **/
912 EFI_STATUS
913 EFIAPI
RootBridgeIoPciAccess(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN BOOLEAN Read,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 Address,IN UINTN Count,IN OUT VOID * Buffer)914 RootBridgeIoPciAccess (
915   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL       *This,
916   IN     BOOLEAN                               Read,
917   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
918   IN     UINT64                                Address,
919   IN     UINTN                                 Count,
920   IN OUT VOID                                  *Buffer
921   )
922 {
923   EFI_STATUS                                   Status;
924   PCI_ROOT_BRIDGE_INSTANCE                     *RootBridge;
925   EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS  PciAddress;
926   UINT8                                        *Uint8Buffer;
927   UINT8                                        InStride;
928   UINT8                                        OutStride;
929   UINTN                                        Size;
930 
931   Status = RootBridgeIoCheckParameter (This, PciOperation, Width, Address, Count, Buffer);
932   if (EFI_ERROR (Status)) {
933     return Status;
934   }
935 
936   //
937   // Read Pci configuration space
938   //
939   RootBridge = ROOT_BRIDGE_FROM_THIS (This);
940   CopyMem (&PciAddress, &Address, sizeof (PciAddress));
941 
942   if (PciAddress.ExtendedRegister == 0) {
943     PciAddress.ExtendedRegister = PciAddress.Register;
944   }
945 
946   Address = PCI_SEGMENT_LIB_ADDRESS (
947               RootBridge->RootBridgeIo.SegmentNumber,
948               PciAddress.Bus,
949               PciAddress.Device,
950               PciAddress.Function,
951               PciAddress.ExtendedRegister
952               );
953 
954   //
955   // Select loop based on the width of the transfer
956   //
957   InStride  = mInStride[Width];
958   OutStride = mOutStride[Width];
959   Size      = (UINTN) (1 << (Width & 0x03));
960   for (Uint8Buffer = Buffer; Count > 0; Address += InStride, Uint8Buffer += OutStride, Count--) {
961     if (Read) {
962       PciSegmentReadBuffer (Address, Size, Uint8Buffer);
963     } else {
964       PciSegmentWriteBuffer (Address, Size, Uint8Buffer);
965     }
966   }
967   return EFI_SUCCESS;
968 }
969 
970 /**
971   Allows read from PCI configuration space.
972 
973   @param This     A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
974   @param Width    Signifies the width of the memory operation.
975   @param Address  The address within the PCI configuration space
976                   for the PCI controller.
977   @param Count    The number of PCI configuration operations
978                   to perform.
979   @param Buffer   The destination buffer to store the results.
980 
981   @retval EFI_SUCCESS           The data was read from the PCI root bridge.
982   @retval EFI_INVALID_PARAMETER Invalid parameters found.
983 **/
984 EFI_STATUS
985 EFIAPI
RootBridgeIoPciRead(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 Address,IN UINTN Count,IN OUT VOID * Buffer)986 RootBridgeIoPciRead (
987   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL       *This,
988   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
989   IN     UINT64                                Address,
990   IN     UINTN                                 Count,
991   IN OUT VOID                                  *Buffer
992   )
993 {
994   return RootBridgeIoPciAccess (This, TRUE, Width, Address, Count, Buffer);
995 }
996 
997 /**
998   Allows write to PCI configuration space.
999 
1000   @param This     A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
1001   @param Width    Signifies the width of the memory operation.
1002   @param Address  The address within the PCI configuration space
1003                   for the PCI controller.
1004   @param Count    The number of PCI configuration operations
1005                   to perform.
1006   @param Buffer   The source buffer to get the results.
1007 
1008   @retval EFI_SUCCESS            The data was written to the PCI root bridge.
1009   @retval EFI_INVALID_PARAMETER  Invalid parameters found.
1010 **/
1011 EFI_STATUS
1012 EFIAPI
RootBridgeIoPciWrite(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,IN UINT64 Address,IN UINTN Count,IN OUT VOID * Buffer)1013 RootBridgeIoPciWrite (
1014   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL       *This,
1015   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
1016   IN     UINT64                                Address,
1017   IN     UINTN                                 Count,
1018   IN OUT VOID                                  *Buffer
1019   )
1020 {
1021   return RootBridgeIoPciAccess (This, FALSE, Width, Address, Count, Buffer);
1022 }
1023 
1024 /**
1025   Provides the PCI controller-specific address needed to access
1026   system memory for DMA.
1027 
1028   @param This           A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1029   @param Operation      Indicate if the bus master is going to read or write
1030                         to system memory.
1031   @param HostAddress    The system memory address to map on the PCI controller.
1032   @param NumberOfBytes  On input the number of bytes to map.
1033                         On output the number of bytes that were mapped.
1034   @param DeviceAddress  The resulting map address for the bus master PCI
1035                         controller to use to access the system memory's HostAddress.
1036   @param Mapping        The value to pass to Unmap() when the bus master DMA
1037                         operation is complete.
1038 
1039   @retval EFI_SUCCESS            Success.
1040   @retval EFI_INVALID_PARAMETER  Invalid parameters found.
1041   @retval EFI_UNSUPPORTED        The HostAddress cannot be mapped as a common buffer.
1042   @retval EFI_DEVICE_ERROR       The System hardware could not map the requested address.
1043   @retval EFI_OUT_OF_RESOURCES   The request could not be completed due to lack of resources.
1044 **/
1045 EFI_STATUS
1046 EFIAPI
RootBridgeIoMap(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,IN VOID * HostAddress,IN OUT UINTN * NumberOfBytes,OUT EFI_PHYSICAL_ADDRESS * DeviceAddress,OUT VOID ** Mapping)1047 RootBridgeIoMap (
1048   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL            *This,
1049   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION  Operation,
1050   IN     VOID                                       *HostAddress,
1051   IN OUT UINTN                                      *NumberOfBytes,
1052   OUT    EFI_PHYSICAL_ADDRESS                       *DeviceAddress,
1053   OUT    VOID                                       **Mapping
1054   )
1055 {
1056   EFI_STATUS                                        Status;
1057   PCI_ROOT_BRIDGE_INSTANCE                          *RootBridge;
1058   EFI_PHYSICAL_ADDRESS                              PhysicalAddress;
1059   MAP_INFO                                          *MapInfo;
1060 
1061   if (HostAddress == NULL || NumberOfBytes == NULL || DeviceAddress == NULL ||
1062       Mapping == NULL) {
1063     return EFI_INVALID_PARAMETER;
1064   }
1065 
1066   //
1067   // Make sure that Operation is valid
1068   //
1069   if ((UINT32) Operation >= EfiPciOperationMaximum) {
1070     return EFI_INVALID_PARAMETER;
1071   }
1072 
1073   RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1074 
1075   PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress;
1076   if ((!RootBridge->DmaAbove4G ||
1077        (Operation != EfiPciOperationBusMasterRead64 &&
1078         Operation != EfiPciOperationBusMasterWrite64 &&
1079         Operation != EfiPciOperationBusMasterCommonBuffer64)) &&
1080       ((PhysicalAddress + *NumberOfBytes) > SIZE_4GB)) {
1081 
1082     //
1083     // If the root bridge or the device cannot handle performing DMA above
1084     // 4GB but any part of the DMA transfer being mapped is above 4GB, then
1085     // map the DMA transfer to a buffer below 4GB.
1086     //
1087 
1088     if (Operation == EfiPciOperationBusMasterCommonBuffer ||
1089         Operation == EfiPciOperationBusMasterCommonBuffer64) {
1090       //
1091       // Common Buffer operations can not be remapped.  If the common buffer
1092       // if above 4GB, then it is not possible to generate a mapping, so return
1093       // an error.
1094       //
1095       return EFI_UNSUPPORTED;
1096     }
1097 
1098     //
1099     // Allocate a MAP_INFO structure to remember the mapping when Unmap() is
1100     // called later.
1101     //
1102     MapInfo = AllocatePool (sizeof (MAP_INFO));
1103     if (MapInfo == NULL) {
1104       *NumberOfBytes = 0;
1105       return EFI_OUT_OF_RESOURCES;
1106     }
1107 
1108     //
1109     // Initialize the MAP_INFO structure
1110     //
1111     MapInfo->Signature         = MAP_INFO_SIGNATURE;
1112     MapInfo->Operation         = Operation;
1113     MapInfo->NumberOfBytes     = *NumberOfBytes;
1114     MapInfo->NumberOfPages     = EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes);
1115     MapInfo->HostAddress       = PhysicalAddress;
1116     MapInfo->MappedHostAddress = SIZE_4GB - 1;
1117 
1118     //
1119     // Allocate a buffer below 4GB to map the transfer to.
1120     //
1121     Status = gBS->AllocatePages (
1122                     AllocateMaxAddress,
1123                     EfiBootServicesData,
1124                     MapInfo->NumberOfPages,
1125                     &MapInfo->MappedHostAddress
1126                     );
1127     if (EFI_ERROR (Status)) {
1128       FreePool (MapInfo);
1129       *NumberOfBytes = 0;
1130       return Status;
1131     }
1132 
1133     //
1134     // If this is a read operation from the Bus Master's point of view,
1135     // then copy the contents of the real buffer into the mapped buffer
1136     // so the Bus Master can read the contents of the real buffer.
1137     //
1138     if (Operation == EfiPciOperationBusMasterRead ||
1139         Operation == EfiPciOperationBusMasterRead64) {
1140       CopyMem (
1141         (VOID *) (UINTN) MapInfo->MappedHostAddress,
1142         (VOID *) (UINTN) MapInfo->HostAddress,
1143         MapInfo->NumberOfBytes
1144         );
1145     }
1146 
1147     InsertTailList (&RootBridge->Maps, &MapInfo->Link);
1148 
1149     //
1150     // The DeviceAddress is the address of the maped buffer below 4GB
1151     //
1152     *DeviceAddress = MapInfo->MappedHostAddress;
1153     //
1154     // Return a pointer to the MAP_INFO structure in Mapping
1155     //
1156     *Mapping       = MapInfo;
1157   } else {
1158     //
1159     // If the root bridge CAN handle performing DMA above 4GB or
1160     // the transfer is below 4GB, so the DeviceAddress is simply the
1161     // HostAddress
1162     //
1163     *DeviceAddress = PhysicalAddress;
1164     *Mapping       = NO_MAPPING;
1165   }
1166 
1167   return EFI_SUCCESS;
1168 }
1169 
1170 /**
1171   Completes the Map() operation and releases any corresponding resources.
1172 
1173   The Unmap() function completes the Map() operation and releases any
1174   corresponding resources.
1175   If the operation was an EfiPciOperationBusMasterWrite or
1176   EfiPciOperationBusMasterWrite64, the data is committed to the target system
1177   memory.
1178   Any resources used for the mapping are freed.
1179 
1180   @param[in] This      A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1181   @param[in] Mapping   The mapping value returned from Map().
1182 
1183   @retval EFI_SUCCESS            The range was unmapped.
1184   @retval EFI_INVALID_PARAMETER  Mapping is not a value that was returned by Map().
1185   @retval EFI_DEVICE_ERROR       The data was not committed to the target system memory.
1186 **/
1187 EFI_STATUS
1188 EFIAPI
RootBridgeIoUnmap(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN VOID * Mapping)1189 RootBridgeIoUnmap (
1190   IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  *This,
1191   IN VOID                             *Mapping
1192   )
1193 {
1194   MAP_INFO                 *MapInfo;
1195   LIST_ENTRY               *Link;
1196   PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1197 
1198   RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1199   //
1200   // See if the Map() operation associated with this Unmap() required a mapping
1201   // buffer. If a mapping buffer was not required, then this function simply
1202   // returns EFI_SUCCESS.
1203   //
1204   if (Mapping == NO_MAPPING) {
1205     return EFI_SUCCESS;
1206   }
1207 
1208   MapInfo = NO_MAPPING;
1209   for (Link = GetFirstNode (&RootBridge->Maps)
1210        ; !IsNull (&RootBridge->Maps, Link)
1211        ; Link = GetNextNode (&RootBridge->Maps, Link)
1212        ) {
1213     MapInfo = MAP_INFO_FROM_LINK (Link);
1214     if (MapInfo == Mapping) {
1215       break;
1216     }
1217   }
1218   //
1219   // Mapping is not a valid value returned by Map()
1220   //
1221   if (MapInfo != Mapping) {
1222     return EFI_INVALID_PARAMETER;
1223   }
1224   RemoveEntryList (&MapInfo->Link);
1225 
1226   //
1227   // If this is a write operation from the Bus Master's point of view,
1228   // then copy the contents of the mapped buffer into the real buffer
1229   // so the processor can read the contents of the real buffer.
1230   //
1231   if (MapInfo->Operation == EfiPciOperationBusMasterWrite ||
1232       MapInfo->Operation == EfiPciOperationBusMasterWrite64) {
1233     CopyMem (
1234       (VOID *) (UINTN) MapInfo->HostAddress,
1235       (VOID *) (UINTN) MapInfo->MappedHostAddress,
1236       MapInfo->NumberOfBytes
1237       );
1238   }
1239 
1240   //
1241   // Free the mapped buffer and the MAP_INFO structure.
1242   //
1243   gBS->FreePages (MapInfo->MappedHostAddress, MapInfo->NumberOfPages);
1244   FreePool (Mapping);
1245   return EFI_SUCCESS;
1246 }
1247 
1248 /**
1249   Allocates pages that are suitable for an EfiPciOperationBusMasterCommonBuffer
1250   or EfiPciOperationBusMasterCommonBuffer64 mapping.
1251 
1252   @param This        A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1253   @param Type        This parameter is not used and must be ignored.
1254   @param MemoryType  The type of memory to allocate, EfiBootServicesData or
1255                      EfiRuntimeServicesData.
1256   @param Pages       The number of pages to allocate.
1257   @param HostAddress A pointer to store the base system memory address of the
1258                      allocated range.
1259   @param Attributes  The requested bit mask of attributes for the allocated
1260                      range. Only the attributes
1261                      EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE,
1262                      EFI_PCI_ATTRIBUTE_MEMORY_CACHED, and
1263                      EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE may be used with this
1264                      function.
1265 
1266   @retval EFI_SUCCESS            The requested memory pages were allocated.
1267   @retval EFI_INVALID_PARAMETER  MemoryType is invalid.
1268   @retval EFI_INVALID_PARAMETER  HostAddress is NULL.
1269   @retval EFI_UNSUPPORTED        Attributes is unsupported. The only legal
1270                                  attribute bits are MEMORY_WRITE_COMBINE,
1271                                  MEMORY_CACHED, and DUAL_ADDRESS_CYCLE.
1272   @retval EFI_OUT_OF_RESOURCES   The memory pages could not be allocated.
1273 **/
1274 EFI_STATUS
1275 EFIAPI
RootBridgeIoAllocateBuffer(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN EFI_ALLOCATE_TYPE Type,IN EFI_MEMORY_TYPE MemoryType,IN UINTN Pages,OUT VOID ** HostAddress,IN UINT64 Attributes)1276 RootBridgeIoAllocateBuffer (
1277   IN  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  *This,
1278   IN  EFI_ALLOCATE_TYPE                Type,
1279   IN  EFI_MEMORY_TYPE                  MemoryType,
1280   IN  UINTN                            Pages,
1281   OUT VOID                             **HostAddress,
1282   IN  UINT64                           Attributes
1283   )
1284 {
1285   EFI_STATUS                Status;
1286   EFI_PHYSICAL_ADDRESS      PhysicalAddress;
1287   PCI_ROOT_BRIDGE_INSTANCE  *RootBridge;
1288   EFI_ALLOCATE_TYPE         AllocateType;
1289 
1290   //
1291   // Validate Attributes
1292   //
1293   if ((Attributes & EFI_PCI_ATTRIBUTE_INVALID_FOR_ALLOCATE_BUFFER) != 0) {
1294     return EFI_UNSUPPORTED;
1295   }
1296 
1297   //
1298   // Check for invalid inputs
1299   //
1300   if (HostAddress == NULL) {
1301     return EFI_INVALID_PARAMETER;
1302   }
1303 
1304   //
1305   // The only valid memory types are EfiBootServicesData and
1306   // EfiRuntimeServicesData
1307   //
1308   if (MemoryType != EfiBootServicesData &&
1309       MemoryType != EfiRuntimeServicesData) {
1310     return EFI_INVALID_PARAMETER;
1311   }
1312 
1313   RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1314 
1315   AllocateType = AllocateAnyPages;
1316   if (!RootBridge->DmaAbove4G ||
1317       (Attributes & EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE) == 0) {
1318     //
1319     // Limit allocations to memory below 4GB
1320     //
1321     AllocateType    = AllocateMaxAddress;
1322     PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (SIZE_4GB - 1);
1323   }
1324   Status = gBS->AllocatePages (
1325                   AllocateType,
1326                   MemoryType,
1327                   Pages,
1328                   &PhysicalAddress
1329                   );
1330   if (!EFI_ERROR (Status)) {
1331     *HostAddress = (VOID *) (UINTN) PhysicalAddress;
1332   }
1333 
1334   return Status;
1335 }
1336 
1337 /**
1338   Frees memory that was allocated with AllocateBuffer().
1339 
1340   The FreeBuffer() function frees memory that was allocated with
1341   AllocateBuffer().
1342 
1343   @param This        A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1344   @param Pages       The number of pages to free.
1345   @param HostAddress The base system memory address of the allocated range.
1346 
1347   @retval EFI_SUCCESS            The requested memory pages were freed.
1348   @retval EFI_INVALID_PARAMETER  The memory range specified by HostAddress and
1349                                  Pages was not allocated with AllocateBuffer().
1350 **/
1351 EFI_STATUS
1352 EFIAPI
RootBridgeIoFreeBuffer(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN UINTN Pages,OUT VOID * HostAddress)1353 RootBridgeIoFreeBuffer (
1354   IN  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  *This,
1355   IN  UINTN                            Pages,
1356   OUT VOID                             *HostAddress
1357   )
1358 {
1359   return gBS->FreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress, Pages);
1360 }
1361 
1362 /**
1363   Flushes all PCI posted write transactions from a PCI host bridge to system
1364   memory.
1365 
1366   The Flush() function flushes any PCI posted write transactions from a PCI
1367   host bridge to system memory. Posted write transactions are generated by PCI
1368   bus masters when they perform write transactions to target addresses in
1369   system memory.
1370   This function does not flush posted write transactions from any PCI bridges.
1371   A PCI controller specific action must be taken to guarantee that the posted
1372   write transactions have been flushed from the PCI controller and from all the
1373   PCI bridges into the PCI host bridge. This is typically done with a PCI read
1374   transaction from the PCI controller prior to calling Flush().
1375 
1376   @param This        A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1377 
1378   @retval EFI_SUCCESS        The PCI posted write transactions were flushed
1379                              from the PCI host bridge to system memory.
1380   @retval EFI_DEVICE_ERROR   The PCI posted write transactions were not flushed
1381                              from the PCI host bridge due to a hardware error.
1382 **/
1383 EFI_STATUS
1384 EFIAPI
RootBridgeIoFlush(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This)1385 RootBridgeIoFlush (
1386   IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL           *This
1387   )
1388 {
1389   return EFI_SUCCESS;
1390 }
1391 
1392 /**
1393   Gets the attributes that a PCI root bridge supports setting with
1394   SetAttributes(), and the attributes that a PCI root bridge is currently
1395   using.
1396 
1397   The GetAttributes() function returns the mask of attributes that this PCI
1398   root bridge supports and the mask of attributes that the PCI root bridge is
1399   currently using.
1400 
1401   @param This        A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1402   @param Supported   A pointer to the mask of attributes that this PCI root
1403                      bridge supports setting with SetAttributes().
1404   @param Attributes  A pointer to the mask of attributes that this PCI root
1405                      bridge is currently using.
1406 
1407   @retval  EFI_SUCCESS           If Supports is not NULL, then the attributes
1408                                  that the PCI root bridge supports is returned
1409                                  in Supports. If Attributes is not NULL, then
1410                                  the attributes that the PCI root bridge is
1411                                  currently using is returned in Attributes.
1412   @retval  EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.
1413 **/
1414 EFI_STATUS
1415 EFIAPI
RootBridgeIoGetAttributes(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,OUT UINT64 * Supported,OUT UINT64 * Attributes)1416 RootBridgeIoGetAttributes (
1417   IN  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  *This,
1418   OUT UINT64                           *Supported,
1419   OUT UINT64                           *Attributes
1420   )
1421 {
1422   PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1423 
1424   if (Attributes == NULL && Supported == NULL) {
1425     return EFI_INVALID_PARAMETER;
1426   }
1427 
1428   RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1429   //
1430   // Set the return value for Supported and Attributes
1431   //
1432   if (Supported != NULL) {
1433     *Supported  = RootBridge->Supports;
1434   }
1435 
1436   if (Attributes != NULL) {
1437     *Attributes = RootBridge->Attributes;
1438   }
1439 
1440   return EFI_SUCCESS;
1441 }
1442 
1443 /**
1444   Sets attributes for a resource range on a PCI root bridge.
1445 
1446   The SetAttributes() function sets the attributes specified in Attributes for
1447   the PCI root bridge on the resource range specified by ResourceBase and
1448   ResourceLength. Since the granularity of setting these attributes may vary
1449   from resource type to resource type, and from platform to platform, the
1450   actual resource range and the one passed in by the caller may differ. As a
1451   result, this function may set the attributes specified by Attributes on a
1452   larger resource range than the caller requested. The actual range is returned
1453   in ResourceBase and ResourceLength. The caller is responsible for verifying
1454   that the actual range for which the attributes were set is acceptable.
1455 
1456   @param This            A pointer to the
1457                          EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1458   @param Attributes      The mask of attributes to set. If the
1459                          attribute bit MEMORY_WRITE_COMBINE,
1460                          MEMORY_CACHED, or MEMORY_DISABLE is set,
1461                          then the resource range is specified by
1462                          ResourceBase and ResourceLength. If
1463                          MEMORY_WRITE_COMBINE, MEMORY_CACHED, and
1464                          MEMORY_DISABLE are not set, then
1465                          ResourceBase and ResourceLength are ignored,
1466                          and may be NULL.
1467   @param ResourceBase    A pointer to the base address of the
1468                          resource range to be modified by the
1469                          attributes specified by Attributes.
1470   @param ResourceLength  A pointer to the length of the resource
1471                                    range to be modified by the attributes
1472                                    specified by Attributes.
1473 
1474   @retval  EFI_SUCCESS           The current configuration of this PCI root bridge
1475                                  was returned in Resources.
1476   @retval  EFI_UNSUPPORTED       The current configuration of this PCI root bridge
1477                                  could not be retrieved.
1478 **/
1479 EFI_STATUS
1480 EFIAPI
RootBridgeIoSetAttributes(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,IN UINT64 Attributes,IN OUT UINT64 * ResourceBase,IN OUT UINT64 * ResourceLength)1481 RootBridgeIoSetAttributes (
1482   IN     EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL  *This,
1483   IN     UINT64                           Attributes,
1484   IN OUT UINT64                           *ResourceBase,
1485   IN OUT UINT64                           *ResourceLength
1486   )
1487 {
1488   PCI_ROOT_BRIDGE_INSTANCE            *RootBridge;
1489 
1490   RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1491 
1492   if ((Attributes & (~RootBridge->Supports)) != 0) {
1493     return EFI_UNSUPPORTED;
1494   }
1495 
1496   RootBridge->Attributes = Attributes;
1497   return EFI_SUCCESS;
1498 }
1499 
1500 /**
1501   Retrieves the current resource settings of this PCI root bridge in the form
1502   of a set of ACPI 2.0 resource descriptors.
1503 
1504   There are only two resource descriptor types from the ACPI Specification that
1505   may be used to describe the current resources allocated to a PCI root bridge.
1506   These are the QWORD Address Space Descriptor (ACPI 2.0 Section 6.4.3.5.1),
1507   and the End Tag (ACPI 2.0 Section 6.4.2.8). The QWORD Address Space
1508   Descriptor can describe memory, I/O, and bus number ranges for dynamic or
1509   fixed resources. The configuration of a PCI root bridge is described with one
1510   or more QWORD Address Space Descriptors followed by an End Tag.
1511 
1512   @param[in]   This        A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1513   @param[out]  Resources   A pointer to the ACPI 2.0 resource descriptors that
1514                            describe the current configuration of this PCI root
1515                            bridge. The storage for the ACPI 2.0 resource
1516                            descriptors is allocated by this function. The
1517                            caller must treat the return buffer as read-only
1518                            data, and the buffer must not be freed by the
1519                            caller.
1520 
1521   @retval  EFI_SUCCESS     The current configuration of this PCI root bridge
1522                            was returned in Resources.
1523   @retval  EFI_UNSUPPORTED The current configuration of this PCI root bridge
1524                            could not be retrieved.
1525 **/
1526 EFI_STATUS
1527 EFIAPI
RootBridgeIoConfiguration(IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL * This,OUT VOID ** Resources)1528 RootBridgeIoConfiguration (
1529   IN  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL     *This,
1530   OUT VOID                                **Resources
1531   )
1532 {
1533   PCI_RESOURCE_TYPE                 Index;
1534   PCI_ROOT_BRIDGE_INSTANCE          *RootBridge;
1535   PCI_RES_NODE                      *ResAllocNode;
1536   EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
1537   EFI_ACPI_END_TAG_DESCRIPTOR       *End;
1538 
1539   //
1540   // Get this instance of the Root Bridge.
1541   //
1542   RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1543   ZeroMem (
1544     RootBridge->ConfigBuffer,
1545     TypeMax * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR)
1546     );
1547   Descriptor = RootBridge->ConfigBuffer;
1548   for (Index = TypeIo; Index < TypeMax; Index++) {
1549 
1550     ResAllocNode = &RootBridge->ResAllocNode[Index];
1551 
1552     if (ResAllocNode->Status != ResAllocated) {
1553       continue;
1554     }
1555 
1556     Descriptor->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
1557     Descriptor->Len  = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
1558     Descriptor->AddrRangeMin  = ResAllocNode->Base;
1559     Descriptor->AddrRangeMax  = ResAllocNode->Base + ResAllocNode->Length - 1;
1560     Descriptor->AddrLen       = ResAllocNode->Length;
1561     switch (ResAllocNode->Type) {
1562 
1563     case TypeIo:
1564       Descriptor->ResType       = ACPI_ADDRESS_SPACE_TYPE_IO;
1565       break;
1566 
1567     case TypePMem32:
1568       Descriptor->SpecificFlag = EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE;
1569     case TypeMem32:
1570       Descriptor->ResType               = ACPI_ADDRESS_SPACE_TYPE_MEM;
1571       Descriptor->AddrSpaceGranularity  = 32;
1572       break;
1573 
1574     case TypePMem64:
1575       Descriptor->SpecificFlag = EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE;
1576     case TypeMem64:
1577       Descriptor->ResType               = ACPI_ADDRESS_SPACE_TYPE_MEM;
1578       Descriptor->AddrSpaceGranularity  = 64;
1579       break;
1580 
1581     case TypeBus:
1582       Descriptor->ResType       = ACPI_ADDRESS_SPACE_TYPE_BUS;
1583       break;
1584 
1585     default:
1586       break;
1587     }
1588 
1589     Descriptor++;
1590   }
1591   //
1592   // Terminate the entries.
1593   //
1594   End = (EFI_ACPI_END_TAG_DESCRIPTOR *) Descriptor;
1595   End->Desc     = ACPI_END_TAG_DESCRIPTOR;
1596   End->Checksum = 0x0;
1597 
1598   *Resources = RootBridge->ConfigBuffer;
1599   return EFI_SUCCESS;
1600 }
1601