1 /**@file
2
3 Copyright (c) 2006 - 2015, Intel Corporation. All rights reserved.<BR>
4 (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 Module Name:
14
15 SecMain.c
16
17 Abstract:
18 WinNt emulator of SEC phase. It's really a Win32 application, but this is
19 Ok since all the other modules for NT32 are NOT Win32 applications.
20
21 This program gets NT32 PCD setting and figures out what the memory layout
22 will be, how may FD's will be loaded and also what the boot mode is.
23
24 The SEC registers a set of services with the SEC core. gPrivateDispatchTable
25 is a list of PPI's produced by the SEC that are available for usage in PEI.
26
27 This code produces 128 K of temporary memory for the PEI stack by directly
28 allocate memory space with ReadWrite and Execute attribute.
29
30 **/
31
32 #include "SecMain.h"
33
34 #ifndef SE_TIME_ZONE_NAME
35 #define SE_TIME_ZONE_NAME TEXT("SeTimeZonePrivilege")
36 #endif
37
38 NT_PEI_LOAD_FILE_PPI mSecNtLoadFilePpi = { SecWinNtPeiLoadFile };
39
40 PEI_NT_AUTOSCAN_PPI mSecNtAutoScanPpi = { SecWinNtPeiAutoScan };
41
42 PEI_NT_THUNK_PPI mSecWinNtThunkPpi = { SecWinNtWinNtThunkAddress };
43
44 EFI_PEI_PROGRESS_CODE_PPI mSecStatusCodePpi = { SecPeiReportStatusCode };
45
46 NT_FWH_PPI mSecFwhInformationPpi = { SecWinNtFdAddress };
47
48 EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI mSecTemporaryRamSupportPpi = {SecTemporaryRamSupport};
49
50 EFI_PEI_PPI_DESCRIPTOR gPrivateDispatchTable[] = {
51 {
52 EFI_PEI_PPI_DESCRIPTOR_PPI,
53 &gNtPeiLoadFilePpiGuid,
54 &mSecNtLoadFilePpi
55 },
56 {
57 EFI_PEI_PPI_DESCRIPTOR_PPI,
58 &gPeiNtAutoScanPpiGuid,
59 &mSecNtAutoScanPpi
60 },
61 {
62 EFI_PEI_PPI_DESCRIPTOR_PPI,
63 &gPeiNtThunkPpiGuid,
64 &mSecWinNtThunkPpi
65 },
66 {
67 EFI_PEI_PPI_DESCRIPTOR_PPI,
68 &gEfiPeiStatusCodePpiGuid,
69 &mSecStatusCodePpi
70 },
71 {
72 EFI_PEI_PPI_DESCRIPTOR_PPI,
73 &gEfiTemporaryRamSupportPpiGuid,
74 &mSecTemporaryRamSupportPpi
75 },
76 {
77 EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
78 &gNtFwhPpiGuid,
79 &mSecFwhInformationPpi
80 }
81 };
82
83
84 //
85 // Default information about where the FD is located.
86 // This array gets filled in with information from PcdWinNtFirmwareVolume
87 // The number of array elements is allocated base on parsing
88 // PcdWinNtFirmwareVolume and the memory is never freed.
89 //
90 UINTN gFdInfoCount = 0;
91 NT_FD_INFO *gFdInfo;
92
93 //
94 // Array that supports seperate memory rantes.
95 // The memory ranges are set by PcdWinNtMemorySizeForSecMain.
96 // The number of array elements is allocated base on parsing
97 // PcdWinNtMemorySizeForSecMain value and the memory is never freed.
98 //
99 UINTN gSystemMemoryCount = 0;
100 NT_SYSTEM_MEMORY *gSystemMemory;
101
102 VOID
103 EFIAPI
104 SecSwitchStack (
105 UINT32 TemporaryMemoryBase,
106 UINT32 PermenentMemoryBase
107 );
108 EFI_STATUS
109 SecNt32PeCoffRelocateImage (
110 IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
111 );
112
113 VOID
114 EFIAPI
115 PeiSwitchStacks (
116 IN SWITCH_STACK_ENTRY_POINT EntryPoint,
117 IN VOID *Context1, OPTIONAL
118 IN VOID *Context2, OPTIONAL
119 IN VOID *Context3, OPTIONAL
120 IN VOID *NewStack
121 );
122
123 VOID
SecPrint(CHAR8 * Format,...)124 SecPrint (
125 CHAR8 *Format,
126 ...
127 )
128 {
129 va_list Marker;
130 UINTN CharCount;
131 CHAR8 Buffer[EFI_STATUS_CODE_DATA_MAX_SIZE];
132
133 va_start (Marker, Format);
134
135 _vsnprintf (Buffer, sizeof (Buffer), Format, Marker);
136
137 va_end (Marker);
138
139 CharCount = strlen (Buffer);
140 WriteFile (
141 GetStdHandle (STD_OUTPUT_HANDLE),
142 Buffer,
143 (DWORD)CharCount,
144 (LPDWORD)&CharCount,
145 NULL
146 );
147 }
148
149 INTN
150 EFIAPI
main(IN INTN Argc,IN CHAR8 ** Argv,IN CHAR8 ** Envp)151 main (
152 IN INTN Argc,
153 IN CHAR8 **Argv,
154 IN CHAR8 **Envp
155 )
156 /*++
157
158 Routine Description:
159 Main entry point to SEC for WinNt. This is a Windows program
160
161 Arguments:
162 Argc - Number of command line arguments
163 Argv - Array of command line argument strings
164 Envp - Array of environment variable strings
165
166 Returns:
167 0 - Normal exit
168 1 - Abnormal exit
169
170 --*/
171 {
172 EFI_STATUS Status;
173 HANDLE Token;
174 TOKEN_PRIVILEGES TokenPrivileges;
175 EFI_PHYSICAL_ADDRESS InitialStackMemory;
176 UINT64 InitialStackMemorySize;
177 UINTN Index;
178 UINTN Index1;
179 UINTN Index2;
180 CHAR16 *FileName;
181 CHAR16 *FileNamePtr;
182 BOOLEAN Done;
183 VOID *PeiCoreFile;
184 CHAR16 *MemorySizeStr;
185 CHAR16 *FirmwareVolumesStr;
186 UINTN *StackPointer;
187 UINT32 ProcessAffinityMask;
188 UINT32 SystemAffinityMask;
189 INT32 LowBit;
190
191
192 //
193 // Enable the privilege so that RTC driver can successfully run SetTime()
194 //
195 OpenProcessToken (GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES|TOKEN_QUERY, &Token);
196 if (LookupPrivilegeValue(NULL, SE_TIME_ZONE_NAME, &TokenPrivileges.Privileges[0].Luid)) {
197 TokenPrivileges.PrivilegeCount = 1;
198 TokenPrivileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
199 AdjustTokenPrivileges(Token, FALSE, &TokenPrivileges, 0, (PTOKEN_PRIVILEGES) NULL, 0);
200 }
201
202 MemorySizeStr = (CHAR16 *) PcdGetPtr (PcdWinNtMemorySizeForSecMain);
203 FirmwareVolumesStr = (CHAR16 *) PcdGetPtr (PcdWinNtFirmwareVolume);
204
205 SecPrint ("\nEDK II SEC Main NT Emulation Environment from www.TianoCore.org\n");
206
207 //
208 // Determine the first thread available to this process.
209 //
210 if (GetProcessAffinityMask (GetCurrentProcess (), &ProcessAffinityMask, &SystemAffinityMask)) {
211 LowBit = (INT32)LowBitSet32 (ProcessAffinityMask);
212 if (LowBit != -1) {
213 //
214 // Force the system to bind the process to a single thread to work
215 // around odd semaphore type crashes.
216 //
217 SetProcessAffinityMask (GetCurrentProcess (), (INTN)(BIT0 << LowBit));
218 }
219 }
220
221 //
222 // Make some Windows calls to Set the process to the highest priority in the
223 // idle class. We need this to have good performance.
224 //
225 SetPriorityClass (GetCurrentProcess (), IDLE_PRIORITY_CLASS);
226 SetThreadPriority (GetCurrentThread (), THREAD_PRIORITY_HIGHEST);
227
228 //
229 // Allocate space for gSystemMemory Array
230 //
231 gSystemMemoryCount = CountSeparatorsInString (MemorySizeStr, '!') + 1;
232 gSystemMemory = calloc (gSystemMemoryCount, sizeof (NT_SYSTEM_MEMORY));
233 if (gSystemMemory == NULL) {
234 SecPrint ("ERROR : Can not allocate memory for %S. Exiting.\n", MemorySizeStr);
235 exit (1);
236 }
237 //
238 // Allocate space for gSystemMemory Array
239 //
240 gFdInfoCount = CountSeparatorsInString (FirmwareVolumesStr, '!') + 1;
241 gFdInfo = calloc (gFdInfoCount, sizeof (NT_FD_INFO));
242 if (gFdInfo == NULL) {
243 SecPrint ("ERROR : Can not allocate memory for %S. Exiting.\n", FirmwareVolumesStr);
244 exit (1);
245 }
246 //
247 // Setup Boot Mode. If BootModeStr == "" then BootMode = 0 (BOOT_WITH_FULL_CONFIGURATION)
248 //
249 SecPrint (" BootMode 0x%02x\n", PcdGet32 (PcdWinNtBootMode));
250
251 //
252 // Allocate 128K memory to emulate temp memory for PEI.
253 // on a real platform this would be SRAM, or using the cache as RAM.
254 // Set InitialStackMemory to zero so WinNtOpenFile will allocate a new mapping
255 //
256 InitialStackMemorySize = STACK_SIZE;
257 InitialStackMemory = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (InitialStackMemorySize), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
258 if (InitialStackMemory == 0) {
259 SecPrint ("ERROR : Can not allocate enough space for SecStack\n");
260 exit (1);
261 }
262
263 for (StackPointer = (UINTN*) (UINTN) InitialStackMemory;
264 StackPointer < (UINTN*) ((UINTN)InitialStackMemory + (SIZE_T) InitialStackMemorySize);
265 StackPointer ++) {
266 *StackPointer = 0x5AA55AA5;
267 }
268
269 SecPrint (" SEC passing in %d bytes of temp RAM to PEI\n", InitialStackMemorySize);
270
271 //
272 // Open All the firmware volumes and remember the info in the gFdInfo global
273 //
274 FileNamePtr = (CHAR16 *)malloc (StrLen ((CHAR16 *)FirmwareVolumesStr) * sizeof(CHAR16));
275 if (FileNamePtr == NULL) {
276 SecPrint ("ERROR : Can not allocate memory for firmware volume string\n");
277 exit (1);
278 }
279
280 StrCpy (FileNamePtr, (CHAR16*)FirmwareVolumesStr);
281
282 for (Done = FALSE, Index = 0, PeiCoreFile = NULL; !Done; Index++) {
283 FileName = FileNamePtr;
284 for (Index1 = 0; (FileNamePtr[Index1] != '!') && (FileNamePtr[Index1] != 0); Index1++)
285 ;
286 if (FileNamePtr[Index1] == 0) {
287 Done = TRUE;
288 } else {
289 FileNamePtr[Index1] = '\0';
290 FileNamePtr = FileNamePtr + Index1 + 1;
291 }
292
293 //
294 // Open the FD and remember where it got mapped into our processes address space
295 //
296 Status = WinNtOpenFile (
297 FileName,
298 0,
299 OPEN_EXISTING,
300 &gFdInfo[Index].Address,
301 &gFdInfo[Index].Size
302 );
303 if (EFI_ERROR (Status)) {
304 SecPrint ("ERROR : Can not open Firmware Device File %S (0x%X). Exiting.\n", FileName, Status);
305 exit (1);
306 }
307
308 SecPrint (" FD loaded from");
309 //
310 // printf can't print filenames directly as the \ gets interpreted as an
311 // escape character.
312 //
313 for (Index2 = 0; FileName[Index2] != '\0'; Index2++) {
314 SecPrint ("%c", FileName[Index2]);
315 }
316
317 if (PeiCoreFile == NULL) {
318 //
319 // Assume the beginning of the FD is an FV and look for the PEI Core.
320 // Load the first one we find.
321 //
322 Status = SecFfsFindPeiCore ((EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) gFdInfo[Index].Address, &PeiCoreFile);
323 if (!EFI_ERROR (Status)) {
324 SecPrint (" contains SEC Core");
325 }
326 }
327
328 SecPrint ("\n");
329 }
330 //
331 // Calculate memory regions and store the information in the gSystemMemory
332 // global for later use. The autosizing code will use this data to
333 // map this memory into the SEC process memory space.
334 //
335 for (Index = 0, Done = FALSE; !Done; Index++) {
336 //
337 // Save the size of the memory and make a Unicode filename SystemMemory00, ...
338 //
339 gSystemMemory[Index].Size = _wtoi (MemorySizeStr) * 0x100000;
340
341 //
342 // Find the next region
343 //
344 for (Index1 = 0; MemorySizeStr[Index1] != '!' && MemorySizeStr[Index1] != 0; Index1++)
345 ;
346 if (MemorySizeStr[Index1] == 0) {
347 Done = TRUE;
348 }
349
350 MemorySizeStr = MemorySizeStr + Index1 + 1;
351 }
352
353 SecPrint ("\n");
354
355 //
356 // Hand off to PEI Core
357 //
358 SecLoadFromCore ((UINTN) InitialStackMemory, (UINTN) InitialStackMemorySize, (UINTN) gFdInfo[0].Address, PeiCoreFile);
359
360 //
361 // If we get here, then the PEI Core returned. This is an error as PEI should
362 // always hand off to DXE.
363 //
364 SecPrint ("ERROR : PEI Core returned\n");
365 exit (1);
366 }
367
368 EFI_STATUS
WinNtOpenFile(IN CHAR16 * FileName,IN UINT32 MapSize,IN DWORD CreationDisposition,IN OUT EFI_PHYSICAL_ADDRESS * BaseAddress,OUT UINT64 * Length)369 WinNtOpenFile (
370 IN CHAR16 *FileName,
371 IN UINT32 MapSize,
372 IN DWORD CreationDisposition,
373 IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
374 OUT UINT64 *Length
375 )
376 /*++
377
378 Routine Description:
379 Opens and memory maps a file using WinNt services. If BaseAddress is non zero
380 the process will try and allocate the memory starting at BaseAddress.
381
382 Arguments:
383 FileName - The name of the file to open and map
384 MapSize - The amount of the file to map in bytes
385 CreationDisposition - The flags to pass to CreateFile(). Use to create new files for
386 memory emulation, and exiting files for firmware volume emulation
387 BaseAddress - The base address of the mapped file in the user address space.
388 If passed in as NULL the new memory region is used.
389 If passed in as non NULL the request memory region is used for
390 the mapping of the file into the process space.
391 Length - The size of the mapped region in bytes
392
393 Returns:
394 EFI_SUCCESS - The file was opened and mapped.
395 EFI_NOT_FOUND - FileName was not found in the current directory
396 EFI_DEVICE_ERROR - An error occured attempting to map the opened file
397
398 --*/
399 {
400 HANDLE NtFileHandle;
401 HANDLE NtMapHandle;
402 VOID *VirtualAddress;
403 UINTN FileSize;
404
405 //
406 // Use Win API to open/create a file
407 //
408 NtFileHandle = CreateFile (
409 FileName,
410 GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE,
411 FILE_SHARE_READ,
412 NULL,
413 CreationDisposition,
414 FILE_ATTRIBUTE_NORMAL,
415 NULL
416 );
417 if (NtFileHandle == INVALID_HANDLE_VALUE) {
418 return EFI_NOT_FOUND;
419 }
420 //
421 // Map the open file into a memory range
422 //
423 NtMapHandle = CreateFileMapping (
424 NtFileHandle,
425 NULL,
426 PAGE_EXECUTE_READWRITE,
427 0,
428 MapSize,
429 NULL
430 );
431 if (NtMapHandle == NULL) {
432 return EFI_DEVICE_ERROR;
433 }
434 //
435 // Get the virtual address (address in the emulator) of the mapped file
436 //
437 VirtualAddress = MapViewOfFileEx (
438 NtMapHandle,
439 FILE_MAP_EXECUTE | FILE_MAP_ALL_ACCESS,
440 0,
441 0,
442 MapSize,
443 (LPVOID) (UINTN) *BaseAddress
444 );
445 if (VirtualAddress == NULL) {
446 return EFI_DEVICE_ERROR;
447 }
448
449 if (MapSize == 0) {
450 //
451 // Seek to the end of the file to figure out the true file size.
452 //
453 FileSize = SetFilePointer (
454 NtFileHandle,
455 0,
456 NULL,
457 FILE_END
458 );
459 if (FileSize == -1) {
460 return EFI_DEVICE_ERROR;
461 }
462
463 *Length = (UINT64) FileSize;
464 } else {
465 *Length = (UINT64) MapSize;
466 }
467
468 *BaseAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAddress;
469
470 return EFI_SUCCESS;
471 }
472
473
474 #define BYTES_PER_RECORD 512
475
476 EFI_STATUS
477 EFIAPI
SecPeiReportStatusCode(IN CONST EFI_PEI_SERVICES ** PeiServices,IN EFI_STATUS_CODE_TYPE CodeType,IN EFI_STATUS_CODE_VALUE Value,IN UINT32 Instance,IN CONST EFI_GUID * CallerId,IN CONST EFI_STATUS_CODE_DATA * Data OPTIONAL)478 SecPeiReportStatusCode (
479 IN CONST EFI_PEI_SERVICES **PeiServices,
480 IN EFI_STATUS_CODE_TYPE CodeType,
481 IN EFI_STATUS_CODE_VALUE Value,
482 IN UINT32 Instance,
483 IN CONST EFI_GUID *CallerId,
484 IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL
485 )
486 /*++
487
488 Routine Description:
489
490 This routine produces the ReportStatusCode PEI service. It's passed
491 up to the PEI Core via a PPI. T
492
493 This code currently uses the NT clib printf. This does not work the same way
494 as the EFI Print (), as %t, %g, %s as Unicode are not supported.
495
496 Arguments:
497 (see EFI_PEI_REPORT_STATUS_CODE)
498
499 Returns:
500 EFI_SUCCESS - Always return success
501
502 --*/
503 // TODO: PeiServices - add argument and description to function comment
504 // TODO: CodeType - add argument and description to function comment
505 // TODO: Value - add argument and description to function comment
506 // TODO: Instance - add argument and description to function comment
507 // TODO: CallerId - add argument and description to function comment
508 // TODO: Data - add argument and description to function comment
509 {
510 CHAR8 *Format;
511 BASE_LIST Marker;
512 CHAR8 PrintBuffer[BYTES_PER_RECORD * 2];
513 CHAR8 *Filename;
514 CHAR8 *Description;
515 UINT32 LineNumber;
516 UINT32 ErrorLevel;
517
518
519 if (Data == NULL) {
520 } else if (ReportStatusCodeExtractAssertInfo (CodeType, Value, Data, &Filename, &Description, &LineNumber)) {
521 //
522 // Processes ASSERT ()
523 //
524 SecPrint ("ASSERT %s(%d): %s\n", Filename, (int)LineNumber, Description);
525
526 } else if (ReportStatusCodeExtractDebugInfo (Data, &ErrorLevel, &Marker, &Format)) {
527 //
528 // Process DEBUG () macro
529 //
530 AsciiBSPrint (PrintBuffer, BYTES_PER_RECORD, Format, Marker);
531 SecPrint (PrintBuffer);
532 }
533
534 return EFI_SUCCESS;
535 }
536
537 #if defined (MDE_CPU_IA32)
538 /**
539 Transfers control to a function starting with a new stack.
540
541 Transfers control to the function specified by EntryPoint using the new stack
542 specified by NewStack and passing in the parameters specified by Context1 and
543 Context2. Context1 and Context2 are optional and may be NULL. The function
544 EntryPoint must never return.
545
546 If EntryPoint is NULL, then ASSERT().
547 If NewStack is NULL, then ASSERT().
548
549 @param EntryPoint A pointer to function to call with the new stack.
550 @param Context1 A pointer to the context to pass into the EntryPoint
551 function.
552 @param Context2 A pointer to the context to pass into the EntryPoint
553 function.
554 @param NewStack A pointer to the new stack to use for the EntryPoint
555 function.
556 @param NewBsp A pointer to the new BSP for the EntryPoint on IPF. It's
557 Reserved on other architectures.
558
559 **/
560 VOID
561 EFIAPI
PeiSwitchStacks(IN SWITCH_STACK_ENTRY_POINT EntryPoint,IN VOID * Context1,OPTIONAL IN VOID * Context2,OPTIONAL IN VOID * Context3,OPTIONAL IN VOID * NewStack)562 PeiSwitchStacks (
563 IN SWITCH_STACK_ENTRY_POINT EntryPoint,
564 IN VOID *Context1, OPTIONAL
565 IN VOID *Context2, OPTIONAL
566 IN VOID *Context3, OPTIONAL
567 IN VOID *NewStack
568 )
569 {
570 BASE_LIBRARY_JUMP_BUFFER JumpBuffer;
571
572 ASSERT (EntryPoint != NULL);
573 ASSERT (NewStack != NULL);
574
575 //
576 // Stack should be aligned with CPU_STACK_ALIGNMENT
577 //
578 ASSERT (((UINTN)NewStack & (CPU_STACK_ALIGNMENT - 1)) == 0);
579
580 JumpBuffer.Eip = (UINTN)EntryPoint;
581 JumpBuffer.Esp = (UINTN)NewStack - sizeof (VOID*);
582 JumpBuffer.Esp -= sizeof (Context1) + sizeof (Context2) + sizeof(Context3);
583 ((VOID**)JumpBuffer.Esp)[1] = Context1;
584 ((VOID**)JumpBuffer.Esp)[2] = Context2;
585 ((VOID**)JumpBuffer.Esp)[3] = Context3;
586
587 LongJump (&JumpBuffer, (UINTN)-1);
588
589
590 //
591 // InternalSwitchStack () will never return
592 //
593 ASSERT (FALSE);
594 }
595 #endif
596
597 VOID
SecLoadFromCore(IN UINTN LargestRegion,IN UINTN LargestRegionSize,IN UINTN BootFirmwareVolumeBase,IN VOID * PeiCorePe32File)598 SecLoadFromCore (
599 IN UINTN LargestRegion,
600 IN UINTN LargestRegionSize,
601 IN UINTN BootFirmwareVolumeBase,
602 IN VOID *PeiCorePe32File
603 )
604 /*++
605
606 Routine Description:
607 This is the service to load the PEI Core from the Firmware Volume
608
609 Arguments:
610 LargestRegion - Memory to use for PEI.
611 LargestRegionSize - Size of Memory to use for PEI
612 BootFirmwareVolumeBase - Start of the Boot FV
613 PeiCorePe32File - PEI Core PE32
614
615 Returns:
616 Success means control is transfered and thus we should never return
617
618 --*/
619 {
620 EFI_STATUS Status;
621 VOID *TopOfStack;
622 UINT64 PeiCoreSize;
623 EFI_PHYSICAL_ADDRESS PeiCoreEntryPoint;
624 EFI_PHYSICAL_ADDRESS PeiImageAddress;
625 EFI_SEC_PEI_HAND_OFF *SecCoreData;
626 UINTN PeiStackSize;
627
628 //
629 // Compute Top Of Memory for Stack and PEI Core Allocations
630 //
631 PeiStackSize = (UINTN)RShiftU64((UINT64)STACK_SIZE,1);
632
633 //
634 // |-----------| <---- TemporaryRamBase + TemporaryRamSize
635 // | Heap |
636 // | |
637 // |-----------| <---- StackBase / PeiTemporaryMemoryBase
638 // | |
639 // | Stack |
640 // |-----------| <---- TemporaryRamBase
641 //
642 TopOfStack = (VOID *)(LargestRegion + PeiStackSize);
643
644 //
645 // Reservet space for storing PeiCore's parament in stack.
646 //
647 TopOfStack = (VOID *)((UINTN)TopOfStack - sizeof (EFI_SEC_PEI_HAND_OFF) - CPU_STACK_ALIGNMENT);
648 TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
649
650 //
651 // Bind this information into the SEC hand-off state
652 //
653 SecCoreData = (EFI_SEC_PEI_HAND_OFF*)(UINTN) TopOfStack;
654 SecCoreData->DataSize = sizeof(EFI_SEC_PEI_HAND_OFF);
655 SecCoreData->BootFirmwareVolumeBase = (VOID*)BootFirmwareVolumeBase;
656 SecCoreData->BootFirmwareVolumeSize = PcdGet32(PcdWinNtFirmwareFdSize);
657 SecCoreData->TemporaryRamBase = (VOID*)(UINTN)LargestRegion;
658 SecCoreData->TemporaryRamSize = STACK_SIZE;
659 SecCoreData->StackBase = SecCoreData->TemporaryRamBase;
660 SecCoreData->StackSize = PeiStackSize;
661 SecCoreData->PeiTemporaryRamBase = (VOID*) ((UINTN) SecCoreData->TemporaryRamBase + PeiStackSize);
662 SecCoreData->PeiTemporaryRamSize = STACK_SIZE - PeiStackSize;
663
664 //
665 // Load the PEI Core from a Firmware Volume
666 //
667 Status = SecWinNtPeiLoadFile (
668 PeiCorePe32File,
669 &PeiImageAddress,
670 &PeiCoreSize,
671 &PeiCoreEntryPoint
672 );
673 if (EFI_ERROR (Status)) {
674 return ;
675 }
676
677 //
678 // Transfer control to the PEI Core
679 //
680 PeiSwitchStacks (
681 (SWITCH_STACK_ENTRY_POINT) (UINTN) PeiCoreEntryPoint,
682 SecCoreData,
683 (VOID *) (UINTN) ((EFI_PEI_PPI_DESCRIPTOR *) &gPrivateDispatchTable),
684 NULL,
685 TopOfStack
686 );
687 //
688 // If we get here, then the PEI Core returned. This is an error
689 //
690 return ;
691 }
692
693 EFI_STATUS
694 EFIAPI
SecWinNtPeiAutoScan(IN UINTN Index,OUT EFI_PHYSICAL_ADDRESS * MemoryBase,OUT UINT64 * MemorySize)695 SecWinNtPeiAutoScan (
696 IN UINTN Index,
697 OUT EFI_PHYSICAL_ADDRESS *MemoryBase,
698 OUT UINT64 *MemorySize
699 )
700 /*++
701
702 Routine Description:
703 This service is called from Index == 0 until it returns EFI_UNSUPPORTED.
704 It allows discontinuous memory regions to be supported by the emulator.
705 It uses gSystemMemory[] and gSystemMemoryCount that were created by
706 parsing PcdWinNtMemorySizeForSecMain value.
707 The size comes from the Pcd value and the address comes from the memory space
708 with ReadWrite and Execute attributes allocated by VirtualAlloc() API.
709
710 Arguments:
711 Index - Which memory region to use
712 MemoryBase - Return Base address of memory region
713 MemorySize - Return size in bytes of the memory region
714
715 Returns:
716 EFI_SUCCESS - If memory region was mapped
717 EFI_UNSUPPORTED - If Index is not supported
718
719 --*/
720 {
721 if (Index >= gSystemMemoryCount) {
722 return EFI_UNSUPPORTED;
723 }
724
725 //
726 // Allocate enough memory space for emulator
727 //
728 gSystemMemory[Index].Memory = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (gSystemMemory[Index].Size), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
729 if (gSystemMemory[Index].Memory == 0) {
730 return EFI_OUT_OF_RESOURCES;
731 }
732
733 *MemoryBase = gSystemMemory[Index].Memory;
734 *MemorySize = gSystemMemory[Index].Size;
735
736 return EFI_SUCCESS;
737 }
738
739 VOID *
740 EFIAPI
SecWinNtWinNtThunkAddress(VOID)741 SecWinNtWinNtThunkAddress (
742 VOID
743 )
744 /*++
745
746 Routine Description:
747 Since the SEC is the only Windows program in stack it must export
748 an interface to do Win API calls. That's what the WinNtThunk address
749 is for. gWinNt is initialized in WinNtThunk.c.
750
751 Arguments:
752 InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL);
753 InterfaceBase - Address of the gWinNt global
754
755 Returns:
756 EFI_SUCCESS - Data returned
757
758 --*/
759 {
760 return gWinNt;
761 }
762
763
764 EFI_STATUS
765 EFIAPI
SecWinNtPeiLoadFile(IN VOID * Pe32Data,IN EFI_PHYSICAL_ADDRESS * ImageAddress,IN UINT64 * ImageSize,IN EFI_PHYSICAL_ADDRESS * EntryPoint)766 SecWinNtPeiLoadFile (
767 IN VOID *Pe32Data,
768 IN EFI_PHYSICAL_ADDRESS *ImageAddress,
769 IN UINT64 *ImageSize,
770 IN EFI_PHYSICAL_ADDRESS *EntryPoint
771 )
772 /*++
773
774 Routine Description:
775 Loads and relocates a PE/COFF image into memory.
776
777 Arguments:
778 Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated
779 ImageAddress - The base address of the relocated PE/COFF image
780 ImageSize - The size of the relocated PE/COFF image
781 EntryPoint - The entry point of the relocated PE/COFF image
782
783 Returns:
784 EFI_SUCCESS - The file was loaded and relocated
785 EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file
786
787 --*/
788 {
789 EFI_STATUS Status;
790 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
791
792 ZeroMem (&ImageContext, sizeof (ImageContext));
793 ImageContext.Handle = Pe32Data;
794
795 ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) SecImageRead;
796
797 Status = PeCoffLoaderGetImageInfo (&ImageContext);
798 if (EFI_ERROR (Status)) {
799 return Status;
800 }
801 //
802 // Allocate space in NT (not emulator) memory with ReadWrite and Execute attribute.
803 // Extra space is for alignment
804 //
805 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (ImageContext.ImageSize + (ImageContext.SectionAlignment * 2)), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
806 if (ImageContext.ImageAddress == 0) {
807 return EFI_OUT_OF_RESOURCES;
808 }
809 //
810 // Align buffer on section boundary
811 //
812 ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
813 ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)ImageContext.SectionAlignment - 1);
814
815 Status = PeCoffLoaderLoadImage (&ImageContext);
816 if (EFI_ERROR (Status)) {
817 return Status;
818 }
819
820 Status = SecNt32PeCoffRelocateImage (&ImageContext);
821 if (EFI_ERROR (Status)) {
822 return Status;
823 }
824
825 //
826 // BugBug: Flush Instruction Cache Here when CPU Lib is ready
827 //
828
829 *ImageAddress = ImageContext.ImageAddress;
830 *ImageSize = ImageContext.ImageSize;
831 *EntryPoint = ImageContext.EntryPoint;
832
833 return EFI_SUCCESS;
834 }
835
836 EFI_STATUS
837 EFIAPI
SecWinNtFdAddress(IN UINTN Index,IN OUT EFI_PHYSICAL_ADDRESS * FdBase,IN OUT UINT64 * FdSize)838 SecWinNtFdAddress (
839 IN UINTN Index,
840 IN OUT EFI_PHYSICAL_ADDRESS *FdBase,
841 IN OUT UINT64 *FdSize
842 )
843 /*++
844
845 Routine Description:
846 Return the FD Size and base address. Since the FD is loaded from a
847 file into Windows memory only the SEC will know it's address.
848
849 Arguments:
850 Index - Which FD, starts at zero.
851 FdSize - Size of the FD in bytes
852 FdBase - Start address of the FD. Assume it points to an FV Header
853
854 Returns:
855 EFI_SUCCESS - Return the Base address and size of the FV
856 EFI_UNSUPPORTED - Index does not map to an FD in the system
857
858 --*/
859 {
860 if (Index >= gFdInfoCount) {
861 return EFI_UNSUPPORTED;
862 }
863
864 *FdBase = gFdInfo[Index].Address;
865 *FdSize = gFdInfo[Index].Size;
866
867 if (*FdBase == 0 && *FdSize == 0) {
868 return EFI_UNSUPPORTED;
869 }
870
871 return EFI_SUCCESS;
872 }
873
874 EFI_STATUS
875 EFIAPI
SecImageRead(IN VOID * FileHandle,IN UINTN FileOffset,IN OUT UINTN * ReadSize,OUT VOID * Buffer)876 SecImageRead (
877 IN VOID *FileHandle,
878 IN UINTN FileOffset,
879 IN OUT UINTN *ReadSize,
880 OUT VOID *Buffer
881 )
882 /*++
883
884 Routine Description:
885 Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
886
887 Arguments:
888 FileHandle - The handle to the PE/COFF file
889 FileOffset - The offset, in bytes, into the file to read
890 ReadSize - The number of bytes to read from the file starting at FileOffset
891 Buffer - A pointer to the buffer to read the data into.
892
893 Returns:
894 EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
895
896 --*/
897 {
898 CHAR8 *Destination8;
899 CHAR8 *Source8;
900 UINTN Length;
901
902 Destination8 = Buffer;
903 Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
904 Length = *ReadSize;
905 while (Length--) {
906 *(Destination8++) = *(Source8++);
907 }
908
909 return EFI_SUCCESS;
910 }
911
912 CHAR16 *
AsciiToUnicode(IN CHAR8 * Ascii,IN UINTN * StrLen OPTIONAL)913 AsciiToUnicode (
914 IN CHAR8 *Ascii,
915 IN UINTN *StrLen OPTIONAL
916 )
917 /*++
918
919 Routine Description:
920 Convert the passed in Ascii string to Unicode.
921 Optionally return the length of the strings.
922
923 Arguments:
924 Ascii - Ascii string to convert
925 StrLen - Length of string
926
927 Returns:
928 Pointer to malloc'ed Unicode version of Ascii
929
930 --*/
931 {
932 UINTN Index;
933 CHAR16 *Unicode;
934
935 //
936 // Allocate a buffer for unicode string
937 //
938 for (Index = 0; Ascii[Index] != '\0'; Index++)
939 ;
940 Unicode = malloc ((Index + 1) * sizeof (CHAR16));
941 if (Unicode == NULL) {
942 return NULL;
943 }
944
945 for (Index = 0; Ascii[Index] != '\0'; Index++) {
946 Unicode[Index] = (CHAR16) Ascii[Index];
947 }
948
949 Unicode[Index] = '\0';
950
951 if (StrLen != NULL) {
952 *StrLen = Index;
953 }
954
955 return Unicode;
956 }
957
958 UINTN
CountSeparatorsInString(IN CONST CHAR16 * String,IN CHAR16 Separator)959 CountSeparatorsInString (
960 IN CONST CHAR16 *String,
961 IN CHAR16 Separator
962 )
963 /*++
964
965 Routine Description:
966 Count the number of separators in String
967
968 Arguments:
969 String - String to process
970 Separator - Item to count
971
972 Returns:
973 Number of Separator in String
974
975 --*/
976 {
977 UINTN Count;
978
979 for (Count = 0; *String != '\0'; String++) {
980 if (*String == Separator) {
981 Count++;
982 }
983 }
984
985 return Count;
986 }
987
988
989 EFI_STATUS
SecNt32PeCoffRelocateImage(IN OUT PE_COFF_LOADER_IMAGE_CONTEXT * ImageContext)990 SecNt32PeCoffRelocateImage (
991 IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
992 )
993 {
994 EFI_STATUS Status;
995 VOID *DllEntryPoint;
996 CHAR16 *DllFileName;
997 HMODULE Library;
998 UINTN Index;
999
1000
1001 Status = PeCoffLoaderRelocateImage (ImageContext);
1002 if (EFI_ERROR (Status)) {
1003 //
1004 // We could not relocated the image in memory properly
1005 //
1006 return Status;
1007 }
1008
1009 //
1010 // If we load our own PE COFF images the Windows debugger can not source
1011 // level debug our code. If a valid PDB pointer exists usw it to load
1012 // the *.dll file as a library using Windows* APIs. This allows
1013 // source level debug. The image is still loaded and relocated
1014 // in the Framework memory space like on a real system (by the code above),
1015 // but the entry point points into the DLL loaded by the code bellow.
1016 //
1017
1018 DllEntryPoint = NULL;
1019
1020 //
1021 // Load the DLL if it's not an EBC image.
1022 //
1023 if ((ImageContext->PdbPointer != NULL) &&
1024 (ImageContext->Machine != EFI_IMAGE_MACHINE_EBC)) {
1025 //
1026 // Convert filename from ASCII to Unicode
1027 //
1028 DllFileName = AsciiToUnicode (ImageContext->PdbPointer, &Index);
1029
1030 //
1031 // Check that we have a valid filename
1032 //
1033 if (Index < 5 || DllFileName[Index - 4] != '.') {
1034 free (DllFileName);
1035
1036 //
1037 // Never return an error if PeCoffLoaderRelocateImage() succeeded.
1038 // The image will run, but we just can't source level debug. If we
1039 // return an error the image will not run.
1040 //
1041 return EFI_SUCCESS;
1042 }
1043 //
1044 // Replace .PDB with .DLL on the filename
1045 //
1046 DllFileName[Index - 3] = 'D';
1047 DllFileName[Index - 2] = 'L';
1048 DllFileName[Index - 1] = 'L';
1049
1050 //
1051 // Load the .DLL file into the user process's address space for source
1052 // level debug
1053 //
1054 Library = LoadLibraryEx (DllFileName, NULL, DONT_RESOLVE_DLL_REFERENCES);
1055 if (Library != NULL) {
1056 //
1057 // InitializeDriver is the entry point we put in all our EFI DLL's. The
1058 // DONT_RESOLVE_DLL_REFERENCES argument to LoadLIbraryEx() suppresses the
1059 // normal DLL entry point of DllMain, and prevents other modules that are
1060 // referenced in side the DllFileName from being loaded. There is no error
1061 // checking as the we can point to the PE32 image loaded by Tiano. This
1062 // step is only needed for source level debugging
1063 //
1064 DllEntryPoint = (VOID *) (UINTN) GetProcAddress (Library, "InitializeDriver");
1065
1066 }
1067
1068 if ((Library != NULL) && (DllEntryPoint != NULL)) {
1069 ImageContext->EntryPoint = (EFI_PHYSICAL_ADDRESS) (UINTN) DllEntryPoint;
1070 SecPrint ("LoadLibraryEx (%S,\n NULL, DONT_RESOLVE_DLL_REFERENCES)\n", DllFileName);
1071 } else {
1072 SecPrint ("WARNING: No source level debug %S. \n", DllFileName);
1073 }
1074
1075 free (DllFileName);
1076 }
1077
1078 //
1079 // Never return an error if PeCoffLoaderRelocateImage() succeeded.
1080 // The image will run, but we just can't source level debug. If we
1081 // return an error the image will not run.
1082 //
1083 return EFI_SUCCESS;
1084 }
1085
1086
1087
1088
1089 VOID
_ModuleEntryPoint(VOID)1090 _ModuleEntryPoint (
1091 VOID
1092 )
1093 {
1094 }
1095
1096 EFI_STATUS
1097 EFIAPI
SecTemporaryRamSupport(IN CONST EFI_PEI_SERVICES ** PeiServices,IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,IN UINTN CopySize)1098 SecTemporaryRamSupport (
1099 IN CONST EFI_PEI_SERVICES **PeiServices,
1100 IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
1101 IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
1102 IN UINTN CopySize
1103 )
1104 {
1105 //
1106 // Migrate the whole temporary memory to permanent memory.
1107 //
1108 CopyMem (
1109 (VOID*)(UINTN)PermanentMemoryBase,
1110 (VOID*)(UINTN)TemporaryMemoryBase,
1111 CopySize
1112 );
1113
1114 //
1115 // SecSwitchStack function must be invoked after the memory migration
1116 // immediately, also we need fixup the stack change caused by new call into
1117 // permanent memory.
1118 //
1119 SecSwitchStack (
1120 (UINT32) TemporaryMemoryBase,
1121 (UINT32) PermanentMemoryBase
1122 );
1123
1124 //
1125 // We need *not* fix the return address because currently,
1126 // The PeiCore is executed in flash.
1127 //
1128
1129 //
1130 // Simulate to invalid temporary memory, terminate temporary memory
1131 //
1132 //ZeroMem ((VOID*)(UINTN)TemporaryMemoryBase, CopySize);
1133
1134 return EFI_SUCCESS;
1135 }
1136
1137