• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //    http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 #include "harness/compat.h"
17 
18 #include <stdio.h>
19 #include <string.h>
20 #include <sys/types.h>
21 #include <sys/stat.h>
22 
23 #include "procs.h"
24 
25 static const char *fmax_kernel_code =
26     "__kernel void test_fmax(__global float *srcA, __global float *srcB, __global float *dst)\n"
27     "{\n"
28     "    int  tid = get_global_id(0);\n"
29     "    dst[tid] = fmax(srcA[tid], srcB[tid]);\n"
30     "}\n";
31 
32 static const char *fmax2_kernel_code =
33     "__kernel void test_fmax2(__global float2 *srcA, __global float *srcB, __global float2 *dst)\n"
34     "{\n"
35     "    int  tid = get_global_id(0);\n"
36     "    dst[tid] = fmax(srcA[tid], srcB[tid]);\n"
37     "}\n";
38 
39 static const char *fmax4_kernel_code =
40     "__kernel void test_fmax4(__global float4 *srcA, __global float *srcB, __global float4 *dst)\n"
41     "{\n"
42     "    int  tid = get_global_id(0);\n"
43     "    dst[tid] = fmax(srcA[tid], srcB[tid]);\n"
44     "}\n";
45 
46 static const char *fmax8_kernel_code =
47     "__kernel void test_fmax8(__global float8 *srcA, __global float *srcB, __global float8 *dst)\n"
48     "{\n"
49     "    int  tid = get_global_id(0);\n"
50     "    dst[tid] = fmax(srcA[tid], srcB[tid]);\n"
51     "}\n";
52 
53 static const char *fmax16_kernel_code =
54     "__kernel void test_fmax16(__global float16 *srcA, __global float *srcB, __global float16 *dst)\n"
55     "{\n"
56     "    int  tid = get_global_id(0);\n"
57     "    dst[tid] = fmax(srcA[tid], srcB[tid]);\n"
58     "}\n";
59 
60 static const char *fmax3_kernel_code =
61     "__kernel void test_fmax3(__global float *srcA, __global float *srcB, __global float *dst)\n"
62     "{\n"
63     "    int  tid = get_global_id(0);\n"
64     "    vstore3(fmax(vload3(tid,srcA), srcB[tid]),tid,dst);\n"
65     "}\n";
66 
67 static int
verify_fmax(float * inptrA,float * inptrB,float * outptr,int n,int veclen)68 verify_fmax(float *inptrA, float *inptrB, float *outptr, int n, int veclen)
69 {
70     float       r;
71     int         i, j;
72 
73     for (i=0; i<n; ) {
74         int ii = i/veclen;
75         for (j=0; j<veclen && i<n; ++j, ++i) {
76             r = (inptrA[i] >= inptrB[ii]) ? inptrA[i] : inptrB[ii];
77             if (r != outptr[i]) {
78                 log_info("Verify noted discrepancy at %d (of %d) (vec %d, pos %d)\n",
79                          i,n,ii,j);
80                 log_info("SHould be %f, is %f\n", r, outptr[i]);
81                 log_info("Taking max of (%f,%f)\n", inptrA[i], inptrB[i]);
82                 return -1;
83             }
84         }
85     }
86 
87     return 0;
88 }
89 
90 int
test_fmaxf(cl_device_id device,cl_context context,cl_command_queue queue,int n_elems)91 test_fmaxf(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
92 {
93     cl_mem       streams[3];
94     cl_float    *input_ptr[2], *output_ptr, *p;
95     cl_program   *program;
96     cl_kernel    *kernel;
97     void        *values[3];
98     size_t  threads[1];
99     int num_elements;
100     int err;
101     int i;
102     MTdata d;
103 
104     program = (cl_program*)malloc(sizeof(cl_program)*kTotalVecCount);
105     kernel = (cl_kernel*)malloc(sizeof(cl_kernel)*kTotalVecCount);
106 
107     num_elements = n_elems * (1 << (kTotalVecCount-1));
108 
109     input_ptr[0] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
110     input_ptr[1] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
111     output_ptr = (cl_float*)malloc(sizeof(cl_float) * num_elements);
112     streams[0] = clCreateBuffer( context, (cl_mem_flags)(CL_MEM_READ_WRITE),  sizeof(cl_float) * num_elements, NULL, NULL );
113     if (!streams[0])
114         {
115             log_error("clCreateBuffer failed\n");
116             return -1;
117         }
118     streams[1] = clCreateBuffer( context, (cl_mem_flags)(CL_MEM_READ_WRITE),  sizeof(cl_float) * num_elements, NULL, NULL );
119     if (!streams[1])
120         {
121             log_error("clCreateBuffer failed\n");
122             return -1;
123         }
124     streams[2] = clCreateBuffer( context, (cl_mem_flags)(CL_MEM_READ_WRITE),  sizeof(cl_float) * num_elements, NULL, NULL );
125     if (!streams[2])
126         {
127             log_error("clCreateBuffer failed\n");
128             return -1;
129         }
130 
131     d = init_genrand( gRandomSeed );
132     p = input_ptr[0];
133     for (i=0; i<num_elements; i++)
134         {
135             p[i] = get_random_float(-0x20000000, 0x20000000, d);
136         }
137     p = input_ptr[1];
138     for (i=0; i<num_elements; i++)
139         {
140             p[i] = get_random_float(-0x20000000, 0x20000000, d);
141         }
142     free_mtdata(d); d = NULL;
143 
144     err = clEnqueueWriteBuffer( queue, streams[0], true, 0, sizeof(cl_float)*num_elements,
145                                 (void *)input_ptr[0], 0, NULL, NULL );
146     if (err != CL_SUCCESS)
147         {
148             log_error("clWriteArray failed\n");
149             return -1;
150         }
151     err = clEnqueueWriteBuffer( queue, streams[1], true, 0, sizeof(cl_float)*num_elements,
152                                 (void *)input_ptr[1], 0, NULL, NULL );
153     if (err != CL_SUCCESS)
154         {
155             log_error("clWriteArray failed\n");
156             return -1;
157         }
158 
159     err = create_single_kernel_helper( context, &program[0], &kernel[0], 1, &fmax_kernel_code, "test_fmax" );
160     if (err)
161         return -1;
162     err = create_single_kernel_helper( context, &program[1], &kernel[1], 1, &fmax2_kernel_code, "test_fmax2" );
163     if (err)
164         return -1;
165     err = create_single_kernel_helper( context, &program[2], &kernel[2], 1, &fmax4_kernel_code, "test_fmax4" );
166     if (err)
167         return -1;
168     err = create_single_kernel_helper( context, &program[3], &kernel[3], 1, &fmax8_kernel_code, "test_fmax8" );
169     if (err)
170         return -1;
171     err = create_single_kernel_helper( context, &program[4], &kernel[4], 1, &fmax16_kernel_code, "test_fmax16" );
172     if (err)
173         return -1;
174     err = create_single_kernel_helper( context, &program[5], &kernel[5], 1, &fmax3_kernel_code, "test_fmax3" );
175     if (err)
176         return -1;
177 
178     values[0] = streams[0];
179     values[1] = streams[1];
180     values[2] = streams[2];
181     for (i=0; i < kTotalVecCount; i++)
182         {
183             err = clSetKernelArg(kernel[i], 0, sizeof streams[0], &streams[0] );
184             err |= clSetKernelArg(kernel[i], 1, sizeof streams[1], &streams[1] );
185             err |= clSetKernelArg(kernel[i], 2, sizeof streams[2], &streams[2] );
186             if (err != CL_SUCCESS)
187                 {
188                     log_error("clSetKernelArgs failed\n");
189                     return -1;
190                 }
191         }
192 
193     threads[0] = (size_t)n_elems;
194     for (i=0; i < kTotalVecCount; i++)
195         {
196             err = clEnqueueNDRangeKernel( queue, kernel[i], 1, NULL, threads, NULL, 0, NULL, NULL );
197             if (err != CL_SUCCESS)
198                 {
199                     log_error("clEnqueueNDRangeKernel failed\n");
200                     return -1;
201                 }
202 
203             err = clEnqueueReadBuffer(queue, streams[2], true, 0, sizeof(cl_float)*num_elements,
204                                       output_ptr, 0, NULL, NULL);
205             if (err != CL_SUCCESS)
206                 {
207                     log_error("clEnqueueReadBuffer failed\n");
208                     return -1;
209                 }
210 
211             if (verify_fmax(input_ptr[0], input_ptr[1], output_ptr, n_elems*((g_arrVecSizes[i])), (g_arrVecSizes[i])))
212                 {
213                     log_error("FMAX float%d,float test failed\n", (g_arrVecSizes[i]));
214                     err = -1;
215                 }
216             else
217                 {
218                     log_info("FMAX float%d,float test passed\n", (g_arrVecSizes[i]));
219                     err = 0;
220                 }
221 
222             if (err)
223                 break;
224         }
225 
226     clReleaseMemObject(streams[0]);
227     clReleaseMemObject(streams[1]);
228     clReleaseMemObject(streams[2]);
229     for (i=0; i < kTotalVecCount; i++)
230         {
231             clReleaseKernel(kernel[i]);
232             clReleaseProgram(program[i]);
233         }
234     free(program);
235     free(kernel);
236     free(input_ptr[0]);
237     free(input_ptr[1]);
238     free(output_ptr);
239 
240     return err;
241 }
242 
243 
244