• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //    http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 #include "Utility.h"
17 
18 #include <string.h>
19 #include "FunctionList.h"
20 
21 int TestFunc_mad(const Func *f, MTdata);
22 int TestFunc_mad_Double(const Func *f, MTdata);
23 
24 extern const vtbl _mad_tbl = { "ternary", TestFunc_mad, TestFunc_mad_Double };
25 
26 static int BuildKernel( const char *name, int vectorSize, cl_kernel *k, cl_program *p );
27 static int BuildKernelDouble( const char *name, int vectorSize, cl_kernel *k, cl_program *p );
28 
BuildKernel(const char * name,int vectorSize,cl_kernel * k,cl_program * p)29 static int BuildKernel( const char *name, int vectorSize, cl_kernel *k, cl_program *p )
30 {
31     const char *c[] = {
32                             "__kernel void math_kernel", sizeNames[vectorSize], "( __global float", sizeNames[vectorSize], "* out, __global float", sizeNames[vectorSize], "* in1, __global float", sizeNames[vectorSize], "* in2,  __global float", sizeNames[vectorSize], "* in3 )\n"
33                             "{\n"
34                             "   int i = get_global_id(0);\n"
35                             "   out[i] = ", name, "( in1[i], in2[i], in3[i] );\n"
36                             "}\n"
37                         };
38     const char *c3[] = {    "__kernel void math_kernel", sizeNames[vectorSize], "( __global float* out, __global float* in, __global float* in2, __global float* in3)\n"
39                             "{\n"
40                             "   size_t i = get_global_id(0);\n"
41                             "   if( i + 1 < get_global_size(0) )\n"
42                             "   {\n"
43                             "       float3 f0 = vload3( 0, in + 3 * i );\n"
44                             "       float3 f1 = vload3( 0, in2 + 3 * i );\n"
45                             "       float3 f2 = vload3( 0, in3 + 3 * i );\n"
46                             "       f0 = ", name, "( f0, f1, f2 );\n"
47                             "       vstore3( f0, 0, out + 3*i );\n"
48                             "   }\n"
49                             "   else\n"
50                             "   {\n"
51                             "       size_t parity = i & 1;   // Figure out how many elements are left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two buffer size \n"
52                             "       float3 f0, f1, f2;\n"
53                             "       switch( parity )\n"
54                             "       {\n"
55                             "           case 1:\n"
56                             "               f0 = (float3)( in[3*i], NAN, NAN ); \n"
57                             "               f1 = (float3)( in2[3*i], NAN, NAN ); \n"
58                             "               f2 = (float3)( in3[3*i], NAN, NAN ); \n"
59                             "               break;\n"
60                             "           case 0:\n"
61                             "               f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
62                             "               f1 = (float3)( in2[3*i], in2[3*i+1], NAN ); \n"
63                             "               f2 = (float3)( in3[3*i], in3[3*i+1], NAN ); \n"
64                             "               break;\n"
65                             "       }\n"
66                             "       f0 = ", name, "( f0, f1, f2 );\n"
67                             "       switch( parity )\n"
68                             "       {\n"
69                             "           case 0:\n"
70                             "               out[3*i+1] = f0.y; \n"
71                             "               // fall through\n"
72                             "           case 1:\n"
73                             "               out[3*i] = f0.x; \n"
74                             "               break;\n"
75                             "       }\n"
76                             "   }\n"
77                             "}\n"
78                         };
79 
80     const char **kern = c;
81     size_t kernSize = sizeof(c)/sizeof(c[0]);
82 
83     if( sizeValues[vectorSize] == 3 )
84     {
85         kern = c3;
86         kernSize = sizeof(c3)/sizeof(c3[0]);
87     }
88 
89     char testName[32];
90     snprintf( testName, sizeof( testName ) -1, "math_kernel%s", sizeNames[vectorSize] );
91 
92     return MakeKernel(kern, (cl_uint) kernSize, testName, k, p);
93 }
94 
BuildKernelDouble(const char * name,int vectorSize,cl_kernel * k,cl_program * p)95 static int BuildKernelDouble( const char *name, int vectorSize, cl_kernel *k, cl_program *p )
96 {
97     const char *c[] = {
98                             "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
99                 "__kernel void math_kernel", sizeNames[vectorSize], "( __global double", sizeNames[vectorSize], "* out, __global double", sizeNames[vectorSize], "* in1, __global double", sizeNames[vectorSize], "* in2,  __global double", sizeNames[vectorSize], "* in3 )\n"
100                             "{\n"
101                             "   int i = get_global_id(0);\n"
102                             "   out[i] = ", name, "( in1[i], in2[i], in3[i] );\n"
103                             "}\n"
104                         };
105     const char *c3[] = {    "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
106                             "__kernel void math_kernel", sizeNames[vectorSize], "( __global double* out, __global double* in, __global double* in2, __global double* in3)\n"
107                             "{\n"
108                             "   size_t i = get_global_id(0);\n"
109                             "   if( i + 1 < get_global_size(0) )\n"
110                             "   {\n"
111                             "       double3 d0 = vload3( 0, in + 3 * i );\n"
112                             "       double3 d1 = vload3( 0, in2 + 3 * i );\n"
113                             "       double3 d2 = vload3( 0, in3 + 3 * i );\n"
114                             "       d0 = ", name, "( d0, d1, d2 );\n"
115                             "       vstore3( d0, 0, out + 3*i );\n"
116                             "   }\n"
117                             "   else\n"
118                             "   {\n"
119                             "       size_t parity = i & 1;   // Figure out how many elements are left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two buffer size \n"
120                             "       double3 d0, d1, d2;\n"
121                             "       switch( parity )\n"
122                             "       {\n"
123                             "           case 1:\n"
124                             "               d0 = (double3)( in[3*i], NAN, NAN ); \n"
125                             "               d1 = (double3)( in2[3*i], NAN, NAN ); \n"
126                             "               d2 = (double3)( in3[3*i], NAN, NAN ); \n"
127                             "               break;\n"
128                             "           case 0:\n"
129                             "               d0 = (double3)( in[3*i], in[3*i+1], NAN ); \n"
130                             "               d1 = (double3)( in2[3*i], in2[3*i+1], NAN ); \n"
131                             "               d2 = (double3)( in3[3*i], in3[3*i+1], NAN ); \n"
132                             "               break;\n"
133                             "       }\n"
134                             "       d0 = ", name, "( d0, d1, d2 );\n"
135                             "       switch( parity )\n"
136                             "       {\n"
137                             "           case 0:\n"
138                             "               out[3*i+1] = d0.y; \n"
139                             "               // fall through\n"
140                             "           case 1:\n"
141                             "               out[3*i] = d0.x; \n"
142                             "               break;\n"
143                             "       }\n"
144                             "   }\n"
145                             "}\n"
146                         };
147 
148     const char **kern = c;
149     size_t kernSize = sizeof(c)/sizeof(c[0]);
150 
151     if( sizeValues[vectorSize] == 3 )
152     {
153         kern = c3;
154         kernSize = sizeof(c3)/sizeof(c3[0]);
155     }
156 
157     char testName[32];
158     snprintf( testName, sizeof( testName ) -1, "math_kernel%s", sizeNames[vectorSize] );
159 
160     return MakeKernel(kern, (cl_uint) kernSize, testName, k, p);
161 }
162 
163 typedef struct BuildKernelInfo
164 {
165     cl_uint     offset;            // the first vector size to build
166     cl_kernel   *kernels;
167     cl_program  *programs;
168     const char  *nameInCode;
169 }BuildKernelInfo;
170 
171 static cl_int BuildKernel_FloatFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p );
BuildKernel_FloatFn(cl_uint job_id,cl_uint thread_id UNUSED,void * p)172 static cl_int BuildKernel_FloatFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p )
173 {
174     BuildKernelInfo *info = (BuildKernelInfo*) p;
175     cl_uint i = info->offset + job_id;
176     return BuildKernel( info->nameInCode, i, info->kernels + i, info->programs + i );
177 }
178 
179 static cl_int BuildKernel_DoubleFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p );
BuildKernel_DoubleFn(cl_uint job_id,cl_uint thread_id UNUSED,void * p)180 static cl_int BuildKernel_DoubleFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p )
181 {
182     BuildKernelInfo *info = (BuildKernelInfo*) p;
183     cl_uint i = info->offset + job_id;
184     return BuildKernelDouble( info->nameInCode, i, info->kernels + i, info->programs + i );
185 }
186 
TestFunc_mad(const Func * f,MTdata d)187 int TestFunc_mad(const Func *f, MTdata d)
188 {
189     uint64_t i;
190     uint32_t j, k;
191     int error;
192 
193     logFunctionInfo(f->name,sizeof(cl_float),gTestFastRelaxed);
194 
195     cl_program programs[ VECTOR_SIZE_COUNT ];
196     cl_kernel kernels[ VECTOR_SIZE_COUNT ];
197     float maxError = 0.0f;
198 //    int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
199     float maxErrorVal = 0.0f;
200     float maxErrorVal2 = 0.0f;
201     float maxErrorVal3 = 0.0f;
202     size_t bufferSize = (gWimpyMode)? gWimpyBufferSize: BUFFER_SIZE;
203     uint64_t step = bufferSize / sizeof( float );
204 
205     if( gWimpyMode )
206     {
207         step = (1ULL<<32) * gWimpyReductionFactor / (512);
208     }
209     // Init the kernels
210     BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs, f->nameInCode };
211     if( (error = ThreadPool_Do( BuildKernel_FloatFn, gMaxVectorSizeIndex - gMinVectorSizeIndex, &build_info ) ))
212         return error;
213 /*
214     for( i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++ )
215         if( (error =  BuildKernel( f->nameInCode, (int) i, kernels + i, programs + i) ) )
216             return error;
217 */
218 
219     for( i = 0; i < (1ULL<<32); i += step )
220     {
221         //Init input array
222         uint32_t *p = (uint32_t *)gIn;
223         uint32_t *p2 = (uint32_t *)gIn2;
224         uint32_t *p3 = (uint32_t *)gIn3;
225         for( j = 0; j < bufferSize / sizeof( float ); j++ )
226         {
227             p[j] = genrand_int32(d);
228             p2[j] = genrand_int32(d);
229             p3[j] = genrand_int32(d);
230         }
231         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
232         {
233             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
234             return error;
235         }
236         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
237         {
238             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error );
239             return error;
240         }
241         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0, bufferSize, gIn3, 0, NULL, NULL) ))
242         {
243             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error );
244             return error;
245         }
246 
247         // write garbage into output arrays
248         for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
249         {
250             uint32_t pattern = 0xffffdead;
251             memset_pattern4(gOut[j], &pattern, bufferSize);
252             if( (error = clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0, bufferSize, gOut[j], 0, NULL, NULL) ))
253             {
254                 vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n", error, j );
255                 goto exit;
256             }
257         }
258 
259         // Run the kernels
260         for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
261         {
262             size_t vectorSize = sizeof( cl_float ) * sizeValues[j];
263             size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;    // bufferSize / vectorSize  rounded up
264             if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
265             if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
266             if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
267             if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer3 ), &gInBuffer3 ) )) { LogBuildError(programs[j]); goto exit; }
268 
269             if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
270             {
271                 vlog_error( "FAILED -- could not execute kernel\n" );
272                 goto exit;
273             }
274         }
275 
276         // Get that moving
277         if( (error = clFlush(gQueue) ))
278             vlog( "clFlush failed\n" );
279 
280         //Calculate the correctly rounded reference result
281         float *r = (float *)gOut_Ref;
282         float *s = (float *)gIn;
283         float *s2 = (float *)gIn2;
284         float *s3 = (float *)gIn3;
285         for( j = 0; j < bufferSize / sizeof( float ); j++ )
286             r[j] = (float) f->func.f_fff( s[j], s2[j], s3[j] );
287 
288         // Read the data back
289         for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
290         {
291             if( (error = clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, bufferSize, gOut[j], 0, NULL, NULL)) )
292             {
293                 vlog_error( "ReadArray failed %d\n", error );
294                 goto exit;
295             }
296         }
297 
298         if( gSkipCorrectnessTesting )
299             break;
300 
301         //Verify data  -- Commented out on purpose. no verification possible. MAD is a random number generator.
302 /*
303         uint32_t *t = gOut_Ref;
304         for( j = 0; j < bufferSize / sizeof( float ); j++ )
305         {
306             for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
307             {
308                 uint32_t *q = gOut[k];
309 
310                 // If we aren't getting the correctly rounded result
311                 if( t[j] != q[j] )
312                 {
313                     float test = ((float*) q)[j];
314                     double correct = f->func.f_fff( s[j], s2[j], s3[j] );
315                     float err = Ulp_Error( test, correct );
316                     int fail = ! (fabsf(err) <= f->float_ulps);
317 
318                     if( fail && ftz )
319                     {
320                         // retry per section 6.5.3.2
321                         if( IsFloatSubnormal(correct) )
322                         { // look at me,
323                             fail = fail && ( test != 0.0f );
324                             if( ! fail )
325                                 err = 0.0f;
326                         }
327 
328                         // retry per section 6.5.3.3
329                         if( fail && IsFloatSubnormal( s[j] ) )
330                         { // look at me,
331                             double correct2 = f->func.f_fff( 0.0, s2[j], s3[j] );
332                             double correct3 = f->func.f_fff( -0.0, s2[j], s3[j] );
333                             float err2 = Ulp_Error( test, correct2  );
334                             float err3 = Ulp_Error( test, correct3  );
335                             fail =  fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3) <= f->float_ulps)));
336                             if( fabsf( err2 ) < fabsf(err ) )
337                                 err = err2;
338                             if( fabsf( err3 ) < fabsf(err ) )
339                                 err = err3;
340 
341                             // retry per section 6.5.3.4
342                             if( IsFloatResultSubnormal(correct2, f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) )
343                             { // look at me now,
344                                 fail = fail && ( test != 0.0f);
345                                 if( ! fail )
346                                     err = 0.0f;
347                             }
348 
349                             //try with first two args as zero
350                             if( IsFloatSubnormal( s2[j] ) )
351                             { // its fun to have fun,
352                                 correct2 = f->func.f_fff( 0.0, 0.0, s3[j] );
353                                 correct3 = f->func.f_fff( -0.0, 0.0, s3[j] );
354                                 double correct4 = f->func.f_fff( 0.0, -0.0, s3[j] );
355                                 double correct5 = f->func.f_fff( -0.0, -0.0, s3[j] );
356                                 err2 = Ulp_Error( test, correct2  );
357                                 err3 = Ulp_Error( test, correct3  );
358                                 float err4 = Ulp_Error( test, correct4  );
359                                 float err5 = Ulp_Error( test, correct5  );
360                                 fail =  fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3) <= f->float_ulps)) &&
361                                                  (!(fabsf(err4) <= f->float_ulps)) && (!(fabsf(err5) <= f->float_ulps)));
362                                 if( fabsf( err2 ) < fabsf(err ) )
363                                     err = err2;
364                                 if( fabsf( err3 ) < fabsf(err ) )
365                                     err = err3;
366                                 if( fabsf( err4 ) < fabsf(err ) )
367                                     err = err4;
368                                 if( fabsf( err5 ) < fabsf(err ) )
369                                     err = err5;
370 
371                                 // retry per section 6.5.3.4
372                                 if( IsFloatResultSubnormal(correct2, f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) ||
373                                     IsFloatResultSubnormal(correct4, f->float_ulps ) || IsFloatResultSubnormal(correct5, f->float_ulps ) )
374                                 {
375                                     fail = fail && ( test != 0.0f);
376                                     if( ! fail )
377                                         err = 0.0f;
378                                 }
379 
380                                 if( IsFloatSubnormal( s3[j] )  )
381                                 { // but you have to know how!
382                                     correct2 = f->func.f_fff( 0.0, 0.0, 0.0f );
383                                     correct3 = f->func.f_fff( -0.0, 0.0, 0.0f );
384                                     correct4 = f->func.f_fff( 0.0, -0.0, 0.0f );
385                                     correct5 = f->func.f_fff( -0.0, -0.0, 0.0f );
386                                     double correct6 = f->func.f_fff( 0.0, 0.0, -0.0f );
387                                     double correct7 = f->func.f_fff( -0.0, 0.0, -0.0f );
388                                     double correct8 = f->func.f_fff( 0.0, -0.0, -0.0f );
389                                     double correct9 = f->func.f_fff( -0.0, -0.0, -0.0f );
390                                     err2 = Ulp_Error( test, correct2  );
391                                     err3 = Ulp_Error( test, correct3  );
392                                     err4 = Ulp_Error( test, correct4  );
393                                     err5 = Ulp_Error( test, correct5  );
394                                     float err6 = Ulp_Error( test, correct6  );
395                                     float err7 = Ulp_Error( test, correct7  );
396                                     float err8 = Ulp_Error( test, correct8  );
397                                     float err9 = Ulp_Error( test, correct9  );
398                                     fail =  fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3) <= f->float_ulps)) &&
399                                                      (!(fabsf(err4) <= f->float_ulps)) && (!(fabsf(err5) <= f->float_ulps)) &&
400                                                      (!(fabsf(err5) <= f->float_ulps)) && (!(fabsf(err6) <= f->float_ulps)) &&
401                                                      (!(fabsf(err7) <= f->float_ulps)) && (!(fabsf(err8) <= f->float_ulps)));
402                                     if( fabsf( err2 ) < fabsf(err ) )
403                                         err = err2;
404                                     if( fabsf( err3 ) < fabsf(err ) )
405                                         err = err3;
406                                     if( fabsf( err4 ) < fabsf(err ) )
407                                         err = err4;
408                                     if( fabsf( err5 ) < fabsf(err ) )
409                                         err = err5;
410                                     if( fabsf( err6 ) < fabsf(err ) )
411                                         err = err6;
412                                     if( fabsf( err7 ) < fabsf(err ) )
413                                         err = err7;
414                                     if( fabsf( err8 ) < fabsf(err ) )
415                                         err = err8;
416                                     if( fabsf( err9 ) < fabsf(err ) )
417                                         err = err9;
418 
419                                     // retry per section 6.5.3.4
420                                     if( IsFloatResultSubnormal(correct2, f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps )  ||
421                                         IsFloatResultSubnormal(correct4, f->float_ulps ) || IsFloatResultSubnormal(correct5, f->float_ulps )  ||
422                                         IsFloatResultSubnormal( correct6, f->float_ulps ) || IsFloatResultSubnormal(correct7, f->float_ulps )  ||
423                                         IsFloatResultSubnormal(correct8, f->float_ulps ) || IsFloatResultSubnormal( correct9, f->float_ulps )  )
424                                     {
425                                         fail = fail && ( test != 0.0f);
426                                         if( ! fail )
427                                             err = 0.0f;
428                                     }
429                                 }
430                             }
431                             else if( IsFloatSubnormal( s3[j] ) )
432                             {
433                                 correct2 = f->func.f_fff( 0.0, s2[j], 0.0 );
434                                 correct3 = f->func.f_fff( -0.0, s2[j], 0.0 );
435                                 double correct4 = f->func.f_fff( 0.0,  s2[j], -0.0 );
436                                 double correct5 = f->func.f_fff( -0.0, s2[j], -0.0 );
437                                 err2 = Ulp_Error( test, correct2  );
438                                 err3 = Ulp_Error( test, correct3  );
439                                 float err4 = Ulp_Error( test, correct4  );
440                                 float err5 = Ulp_Error( test, correct5  );
441                                 fail =  fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3) <= f->float_ulps)) &&
442                                                  (!(fabsf(err4) <= f->float_ulps)) && (!(fabsf(err5) <= f->float_ulps)));
443                                 if( fabsf( err2 ) < fabsf(err ) )
444                                     err = err2;
445                                 if( fabsf( err3 ) < fabsf(err ) )
446                                     err = err3;
447                                 if( fabsf( err4 ) < fabsf(err ) )
448                                     err = err4;
449                                 if( fabsf( err5 ) < fabsf(err ) )
450                                     err = err5;
451 
452                                 // retry per section 6.5.3.4
453                                 if( IsFloatResultSubnormal(correct2, f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps )  ||
454                                     IsFloatResultSubnormal(correct4, f->float_ulps ) || IsFloatResultSubnormal(correct5, f->float_ulps ) )
455                                 {
456                                     fail = fail && ( test != 0.0f);
457                                     if( ! fail )
458                                         err = 0.0f;
459                                 }
460                             }
461                         }
462                         else if( fail && IsFloatSubnormal( s2[j] ) )
463                         {
464                             double correct2 = f->func.f_fff( s[j], 0.0, s3[j] );
465                             double correct3 = f->func.f_fff( s[j], -0.0, s3[j] );
466                             float err2 = Ulp_Error( test, correct2  );
467                             float err3 = Ulp_Error( test, correct3  );
468                             fail =  fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3) <= f->float_ulps)));
469                             if( fabsf( err2 ) < fabsf(err ) )
470                                 err = err2;
471                             if( fabsf( err3 ) < fabsf(err ) )
472                                 err = err3;
473 
474                             // retry per section 6.5.3.4
475                             if( IsFloatResultSubnormal(correct2, f->float_ulps )  || IsFloatResultSubnormal(correct3, f->float_ulps ) )
476                             {
477                                 fail = fail && ( test != 0.0f);
478                                 if( ! fail )
479                                     err = 0.0f;
480                             }
481 
482                             //try with second two args as zero
483                             if( IsFloatSubnormal( s3[j] ) )
484                             {
485                                 correct2 = f->func.f_fff( s[j], 0.0, 0.0 );
486                                 correct3 = f->func.f_fff( s[j], -0.0, 0.0 );
487                                 double correct4 = f->func.f_fff( s[j], 0.0, -0.0 );
488                                 double correct5 = f->func.f_fff( s[j], -0.0, -0.0 );
489                                 err2 = Ulp_Error( test, correct2  );
490                                 err3 = Ulp_Error( test, correct3  );
491                                 float err4 = Ulp_Error( test, correct4  );
492                                 float err5 = Ulp_Error( test, correct5  );
493                                 fail =  fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3) <= f->float_ulps)) &&
494                                                  (!(fabsf(err4) <= f->float_ulps)) && (!(fabsf(err5) <= f->float_ulps)));
495                                 if( fabsf( err2 ) < fabsf(err ) )
496                                     err = err2;
497                                 if( fabsf( err3 ) < fabsf(err ) )
498                                     err = err3;
499                                 if( fabsf( err4 ) < fabsf(err ) )
500                                     err = err4;
501                                 if( fabsf( err5 ) < fabsf(err ) )
502                                     err = err5;
503 
504                                 // retry per section 6.5.3.4
505                                 if( IsFloatResultSubnormal(correct2, f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) ||
506                                     IsFloatResultSubnormal(correct4, f->float_ulps ) || IsFloatResultSubnormal(correct5, f->float_ulps ) )
507                                 {
508                                     fail = fail && ( test != 0.0f);
509                                     if( ! fail )
510                                         err = 0.0f;
511                                 }
512                             }
513                         }
514                         else if( fail && IsFloatSubnormal(s3[j]) )
515                         {
516                             double correct2 = f->func.f_fff( s[j], s2[j], 0.0 );
517                             double correct3 = f->func.f_fff( s[j], s2[j], -0.0 );
518                             float err2 = Ulp_Error( test, correct2  );
519                             float err3 = Ulp_Error( test, correct3  );
520                             fail =  fail && ((!(fabsf(err2) <= f->float_ulps)) && (!(fabsf(err3) <= f->float_ulps)));
521                             if( fabsf( err2 ) < fabsf(err ) )
522                                 err = err2;
523                             if( fabsf( err3 ) < fabsf(err ) )
524                                 err = err3;
525 
526                             // retry per section 6.5.3.4
527                             if( IsFloatResultSubnormal(correct2, f->float_ulps ) || IsFloatResultSubnormal(correct3, f->float_ulps ) )
528                             {
529                                 fail = fail && ( test != 0.0f);
530                                 if( ! fail )
531                                     err = 0.0f;
532                             }
533                         }
534                     }
535 
536                     if( fabsf(err ) > maxError )
537                     {
538                         maxError = fabsf(err);
539                         maxErrorVal = s[j];
540                         maxErrorVal2 = s2[j];
541                         maxErrorVal3 = s3[j];
542                     }
543 
544                     if( fail )
545                     {
546                         vlog_error( "\nERROR: %s%s: %f ulp error at {%a, %a, %a}: *%a vs. %a\n", f->name, sizeNames[k], err, s[j], s2[j], s3[j], ((float*) gOut_Ref)[j], test );
547  error = -1;
548  goto exit;
549                     }
550                 }
551             }
552         }
553 */
554         if( 0 == (i & 0x0fffffff) )
555         {
556             vlog("." );
557             fflush(stdout);
558         }
559     }
560 
561     if( ! gSkipCorrectnessTesting )
562     {
563         if( gWimpyMode )
564             vlog( "Wimp pass" );
565         else
566             vlog( "pass" );
567     }
568 
569     if( gMeasureTimes )
570     {
571         //Init input array
572         uint32_t *p = (uint32_t *)gIn;
573         uint32_t *p2 = (uint32_t *)gIn2;
574         uint32_t *p3 = (uint32_t *)gIn3;
575         for( j = 0; j < bufferSize / sizeof( float ); j++ )
576         {
577             p[j] = genrand_int32(d);
578             p2[j] = genrand_int32(d);
579             p3[j] = genrand_int32(d);
580         }
581         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
582         {
583             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
584             return error;
585         }
586         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
587         {
588             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error );
589             return error;
590         }
591         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0, bufferSize, gIn3, 0, NULL, NULL) ))
592         {
593             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error );
594             return error;
595         }
596 
597 
598         // Run the kernels
599         for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
600         {
601             size_t vectorSize = sizeof( cl_float ) * sizeValues[j];
602             size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;    // bufferSize / vectorSize  rounded up
603             if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
604             if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
605             if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
606             if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer3 ), &gInBuffer3 ) )) { LogBuildError(programs[j]); goto exit; }
607 
608             double sum = 0.0;
609             double bestTime = INFINITY;
610             for( k = 0; k < PERF_LOOP_COUNT; k++ )
611             {
612                 uint64_t startTime = GetTime();
613                 if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
614                 {
615                     vlog_error( "FAILED -- could not execute kernel\n" );
616                     goto exit;
617                 }
618 
619                 // Make sure OpenCL is done
620                 if( (error = clFinish(gQueue) ) )
621                 {
622                     vlog_error( "Error %d at clFinish\n", error );
623                     goto exit;
624                 }
625 
626                 uint64_t endTime = GetTime();
627                 double time = SubtractTime( endTime, startTime );
628                 sum += time;
629                 if( time < bestTime )
630                     bestTime = time;
631             }
632 
633             if( gReportAverageTimes )
634                 bestTime = sum / PERF_LOOP_COUNT;
635             double clocksPerOp = bestTime * (double) gDeviceFrequency * gComputeDevices * gSimdSize * 1e6 / (bufferSize / sizeof( float ) );
636             vlog_perf( clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sf%s", f->name, sizeNames[j] );
637         }
638     }
639 
640     if( ! gSkipCorrectnessTesting )
641         vlog( "\t%8.2f @ {%a, %a, %a}", maxError, maxErrorVal, maxErrorVal2, maxErrorVal3 );
642     vlog( "\n" );
643 
644 exit:
645     // Release
646     for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
647     {
648         clReleaseKernel(kernels[k]);
649         clReleaseProgram(programs[k]);
650     }
651 
652     return error;
653 }
654 
TestFunc_mad_Double(const Func * f,MTdata d)655 int TestFunc_mad_Double(const Func *f, MTdata d)
656 {
657     uint64_t i;
658     uint32_t j, k;
659     int error;
660     cl_program programs[ VECTOR_SIZE_COUNT ];
661     cl_kernel kernels[ VECTOR_SIZE_COUNT ];
662     float maxError = 0.0f;
663 //    int ftz = f->ftz || gForceFTZ;
664     double maxErrorVal = 0.0f;
665     double maxErrorVal2 = 0.0f;
666     double maxErrorVal3 = 0.0f;
667     size_t bufferSize = (gWimpyMode)? gWimpyBufferSize: BUFFER_SIZE;
668 
669     logFunctionInfo(f->name,sizeof(cl_double),gTestFastRelaxed);
670     uint64_t step = bufferSize / sizeof( double );
671     if( gWimpyMode )
672     {
673         step = (1ULL<<32) * gWimpyReductionFactor / (512);
674     }
675     // Init the kernels
676     BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs, f->nameInCode };
677     if( (error = ThreadPool_Do( BuildKernel_DoubleFn,
678                                 gMaxVectorSizeIndex - gMinVectorSizeIndex,
679                                 &build_info ) ))
680     {
681         return error;
682     }
683 /*
684     for( i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++ )
685         if( (error =  BuildKernelDouble( f->nameInCode, (int) i, kernels + i, programs + i) ) )
686             return error;
687 */
688 
689     for( i = 0; i < (1ULL<<32); i += step )
690     {
691         //Init input array
692         double *p = (double *)gIn;
693         double *p2 = (double *)gIn2;
694         double *p3 = (double *)gIn3;
695         for( j = 0; j < bufferSize / sizeof( double ); j++ )
696         {
697             p[j] = DoubleFromUInt32(genrand_int32(d));
698             p2[j] = DoubleFromUInt32(genrand_int32(d));
699             p3[j] = DoubleFromUInt32(genrand_int32(d));
700         }
701         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
702         {
703             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
704             return error;
705         }
706         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
707         {
708             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error );
709             return error;
710         }
711         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0, bufferSize, gIn3, 0, NULL, NULL) ))
712         {
713             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error );
714             return error;
715         }
716 
717         // write garbage into output arrays
718         for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
719         {
720             uint32_t pattern = 0xffffdead;
721             memset_pattern4(gOut[j], &pattern, bufferSize);
722             if( (error = clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0, bufferSize, gOut[j], 0, NULL, NULL) ))
723             {
724                 vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n", error, j );
725                 goto exit;
726             }
727         }
728 
729         // Run the kernels
730         for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
731         {
732             size_t vectorSize = sizeof( cl_double ) * sizeValues[j];
733             size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;    // bufferSize / vectorSize  rounded up
734             if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
735             if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
736             if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
737             if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer3 ), &gInBuffer3 ) )) { LogBuildError(programs[j]); goto exit; }
738 
739             if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
740             {
741                 vlog_error( "FAILED -- could not execute kernel\n" );
742                 goto exit;
743             }
744         }
745 
746         // Get that moving
747         if( (error = clFlush(gQueue) ))
748             vlog( "clFlush failed\n" );
749 
750         //Calculate the correctly rounded reference result
751         double *r = (double *)gOut_Ref;
752         double *s = (double *)gIn;
753         double *s2 = (double *)gIn2;
754         double *s3 = (double *)gIn3;
755         for( j = 0; j < bufferSize / sizeof( double ); j++ )
756             r[j] = (double) f->dfunc.f_fff( s[j], s2[j], s3[j] );
757 
758         // Read the data back
759         for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
760         {
761             if( (error = clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, bufferSize, gOut[j], 0, NULL, NULL)) )
762             {
763                 vlog_error( "ReadArray failed %d\n", error );
764                 goto exit;
765             }
766         }
767 
768         if( gSkipCorrectnessTesting )
769             break;
770 
771         //Verify data  -- Commented out on purpose. no verification possible. MAD is a random number generator.
772 /*
773         uint64_t *t = gOut_Ref;
774         for( j = 0; j < bufferSize / sizeof( double ); j++ )
775         {
776             for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
777             {
778                 uint64_t *q = gOut[k];
779 
780                 // If we aren't getting the correctly rounded result
781                 if( t[j] != q[j] )
782                 {
783                     double test = ((double*) q)[j];
784                     long double correct = f->dfunc.f_fff( s[j], s2[j], s3[j] );
785                     float err = Bruteforce_Ulp_Error_Double( test, correct );
786                     int fail = ! (fabsf(err) <= f->double_ulps);
787 
788                     if( fail && ftz )
789                     {
790                         // retry per section 6.5.3.2
791                         if( IsDoubleResultSubnormal(correct, f->double_ulps) )
792                         { // look at me,
793                             fail = fail && ( test != 0.0f );
794                             if( ! fail )
795                                 err = 0.0f;
796                         }
797 
798                         // retry per section 6.5.3.3
799                         if( fail && IsDoubleSubnormal( s[j] ) )
800                         { // look at me,
801                             long double correct2 = f->dfunc.f_fff( 0.0, s2[j], s3[j] );
802                             long double correct3 = f->dfunc.f_fff( -0.0, s2[j], s3[j] );
803                             float err2 = Bruteforce_Ulp_Error_Double( test, correct2  );
804                             float err3 = Bruteforce_Ulp_Error_Double( test, correct3  );
805                             fail =  fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)));
806                             if( fabsf( err2 ) < fabsf(err ) )
807                                 err = err2;
808                             if( fabsf( err3 ) < fabsf(err ) )
809                                 err = err3;
810 
811                             // retry per section 6.5.3.4
812                             if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) )
813                             { // look at me now,
814                                 fail = fail && ( test != 0.0f);
815                                 if( ! fail )
816                                     err = 0.0f;
817                             }
818 
819                             //try with first two args as zero
820                             if( IsDoubleSubnormal( s2[j] ) )
821                             { // its fun to have fun,
822                                 correct2 = f->dfunc.f_fff( 0.0, 0.0, s3[j] );
823                                 correct3 = f->dfunc.f_fff( -0.0, 0.0, s3[j] );
824                                 long double correct4 = f->dfunc.f_fff( 0.0, -0.0, s3[j] );
825                                 long double correct5 = f->dfunc.f_fff( -0.0, -0.0, s3[j] );
826                                 err2 = Bruteforce_Ulp_Error_Double( test, correct2  );
827                                 err3 = Bruteforce_Ulp_Error_Double( test, correct3  );
828                                 float err4 = Bruteforce_Ulp_Error_Double( test, correct4  );
829                                 float err5 = Bruteforce_Ulp_Error_Double( test, correct5  );
830                                 fail =  fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)) &&
831                                                  (!(fabsf(err4) <= f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps)));
832                                 if( fabsf( err2 ) < fabsf(err ) )
833                                     err = err2;
834                                 if( fabsf( err3 ) < fabsf(err ) )
835                                     err = err3;
836                                 if( fabsf( err4 ) < fabsf(err ) )
837                                     err = err4;
838                                 if( fabsf( err5 ) < fabsf(err ) )
839                                     err = err5;
840 
841                                 // retry per section 6.5.3.4
842                                 if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) ||
843                                     IsDoubleResultSubnormal( correct4, f->double_ulps ) || IsDoubleResultSubnormal( correct5, f->double_ulps ) )
844                                 {
845                                     fail = fail && ( test != 0.0f);
846                                     if( ! fail )
847                                         err = 0.0f;
848                                 }
849 
850                                 if( IsDoubleSubnormal( s3[j] )  )
851                                 { // but you have to know how!
852                                     correct2 = f->dfunc.f_fff( 0.0, 0.0, 0.0f );
853                                     correct3 = f->dfunc.f_fff( -0.0, 0.0, 0.0f );
854                                     correct4 = f->dfunc.f_fff( 0.0, -0.0, 0.0f );
855                                     correct5 = f->dfunc.f_fff( -0.0, -0.0, 0.0f );
856                                     long double correct6 = f->dfunc.f_fff( 0.0, 0.0, -0.0f );
857                                     long double correct7 = f->dfunc.f_fff( -0.0, 0.0, -0.0f );
858                                     long double correct8 = f->dfunc.f_fff( 0.0, -0.0, -0.0f );
859                                     long double correct9 = f->dfunc.f_fff( -0.0, -0.0, -0.0f );
860                                     err2 = Bruteforce_Ulp_Error_Double( test, correct2  );
861                                     err3 = Bruteforce_Ulp_Error_Double( test, correct3  );
862                                     err4 = Bruteforce_Ulp_Error_Double( test, correct4  );
863                                     err5 = Bruteforce_Ulp_Error_Double( test, correct5  );
864                                     float err6 = Bruteforce_Ulp_Error_Double( test, correct6  );
865                                     float err7 = Bruteforce_Ulp_Error_Double( test, correct7  );
866                                     float err8 = Bruteforce_Ulp_Error_Double( test, correct8  );
867                                     float err9 = Bruteforce_Ulp_Error_Double( test, correct9  );
868                                     fail =  fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)) &&
869                                                      (!(fabsf(err4) <= f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps)) &&
870                                                      (!(fabsf(err5) <= f->double_ulps)) && (!(fabsf(err6) <= f->double_ulps)) &&
871                                                      (!(fabsf(err7) <= f->double_ulps)) && (!(fabsf(err8) <= f->double_ulps)));
872                                     if( fabsf( err2 ) < fabsf(err ) )
873                                         err = err2;
874                                     if( fabsf( err3 ) < fabsf(err ) )
875                                         err = err3;
876                                     if( fabsf( err4 ) < fabsf(err ) )
877                                         err = err4;
878                                     if( fabsf( err5 ) < fabsf(err ) )
879                                         err = err5;
880                                     if( fabsf( err6 ) < fabsf(err ) )
881                                         err = err6;
882                                     if( fabsf( err7 ) < fabsf(err ) )
883                                         err = err7;
884                                     if( fabsf( err8 ) < fabsf(err ) )
885                                         err = err8;
886                                     if( fabsf( err9 ) < fabsf(err ) )
887                                         err = err9;
888 
889                                     // retry per section 6.5.3.4
890                                     if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps )  ||
891                                         IsDoubleResultSubnormal( correct4, f->double_ulps ) || IsDoubleResultSubnormal( correct5, f->double_ulps )  ||
892                                         IsDoubleResultSubnormal( correct6, f->double_ulps ) || IsDoubleResultSubnormal( correct7, f->double_ulps )  ||
893                                         IsDoubleResultSubnormal( correct8, f->double_ulps ) || IsDoubleResultSubnormal( correct9, f->double_ulps )  )
894                                     {
895                                         fail = fail && ( test != 0.0f);
896                                         if( ! fail )
897                                             err = 0.0f;
898                                     }
899                                 }
900                             }
901                             else if( IsDoubleSubnormal( s3[j] ) )
902                             {
903                                 correct2 = f->dfunc.f_fff( 0.0, s2[j], 0.0 );
904                                 correct3 = f->dfunc.f_fff( -0.0, s2[j], 0.0 );
905                                 long double correct4 = f->dfunc.f_fff( 0.0,  s2[j], -0.0 );
906                                 long double correct5 = f->dfunc.f_fff( -0.0, s2[j], -0.0 );
907                                 err2 = Bruteforce_Ulp_Error_Double( test, correct2  );
908                                 err3 = Bruteforce_Ulp_Error_Double( test, correct3  );
909                                 float err4 = Bruteforce_Ulp_Error_Double( test, correct4  );
910                                 float err5 = Bruteforce_Ulp_Error_Double( test, correct5  );
911                                 fail =  fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)) &&
912                                                  (!(fabsf(err4) <= f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps)));
913                                 if( fabsf( err2 ) < fabsf(err ) )
914                                     err = err2;
915                                 if( fabsf( err3 ) < fabsf(err ) )
916                                     err = err3;
917                                 if( fabsf( err4 ) < fabsf(err ) )
918                                     err = err4;
919                                 if( fabsf( err5 ) < fabsf(err ) )
920                                     err = err5;
921 
922                                 // retry per section 6.5.3.4
923                                 if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps )  ||
924                                     IsDoubleResultSubnormal( correct4, f->double_ulps ) || IsDoubleResultSubnormal( correct5, f->double_ulps ) )
925                                 {
926                                     fail = fail && ( test != 0.0f);
927                                     if( ! fail )
928                                         err = 0.0f;
929                                 }
930                             }
931                         }
932                         else if( fail && IsDoubleSubnormal( s2[j] ) )
933                         {
934                             long double correct2 = f->dfunc.f_fff( s[j], 0.0, s3[j] );
935                             long double correct3 = f->dfunc.f_fff( s[j], -0.0, s3[j] );
936                             float err2 = Bruteforce_Ulp_Error_Double( test, correct2  );
937                             float err3 = Bruteforce_Ulp_Error_Double( test, correct3  );
938                             fail =  fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)));
939                             if( fabsf( err2 ) < fabsf(err ) )
940                                 err = err2;
941                             if( fabsf( err3 ) < fabsf(err ) )
942                                 err = err3;
943 
944                             // retry per section 6.5.3.4
945                             if( IsDoubleResultSubnormal( correct2, f->double_ulps )  || IsDoubleResultSubnormal( correct3, f->double_ulps ) )
946                             {
947                                 fail = fail && ( test != 0.0f);
948                                 if( ! fail )
949                                     err = 0.0f;
950                             }
951 
952                             //try with second two args as zero
953                             if( IsDoubleSubnormal( s3[j] ) )
954                             {
955                                 correct2 = f->dfunc.f_fff( s[j], 0.0, 0.0 );
956                                 correct3 = f->dfunc.f_fff( s[j], -0.0, 0.0 );
957                                 long double correct4 = f->dfunc.f_fff( s[j], 0.0, -0.0 );
958                                 long double correct5 = f->dfunc.f_fff( s[j], -0.0, -0.0 );
959                                 err2 = Bruteforce_Ulp_Error_Double( test, correct2  );
960                                 err3 = Bruteforce_Ulp_Error_Double( test, correct3  );
961                                 float err4 = Bruteforce_Ulp_Error_Double( test, correct4  );
962                                 float err5 = Bruteforce_Ulp_Error_Double( test, correct5  );
963                                 fail =  fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)) &&
964                                                  (!(fabsf(err4) <= f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps)));
965                                 if( fabsf( err2 ) < fabsf(err ) )
966                                     err = err2;
967                                 if( fabsf( err3 ) < fabsf(err ) )
968                                     err = err3;
969                                 if( fabsf( err4 ) < fabsf(err ) )
970                                     err = err4;
971                                 if( fabsf( err5 ) < fabsf(err ) )
972                                     err = err5;
973 
974                                 // retry per section 6.5.3.4
975                                 if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) ||
976                                     IsDoubleResultSubnormal( correct4, f->double_ulps ) || IsDoubleResultSubnormal( correct5, f->double_ulps ) )
977                                 {
978                                     fail = fail && ( test != 0.0f);
979                                     if( ! fail )
980                                         err = 0.0f;
981                                 }
982                             }
983                         }
984                         else if( fail && IsDoubleSubnormal(s3[j]) )
985                         {
986                             long double correct2 = f->dfunc.f_fff( s[j], s2[j], 0.0 );
987                             long double correct3 = f->dfunc.f_fff( s[j], s2[j], -0.0 );
988                             float err2 = Bruteforce_Ulp_Error_Double( test, correct2  );
989                             float err3 = Bruteforce_Ulp_Error_Double( test, correct3  );
990                             fail =  fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)));
991                             if( fabsf( err2 ) < fabsf(err ) )
992                                 err = err2;
993                             if( fabsf( err3 ) < fabsf(err ) )
994                                 err = err3;
995 
996                             // retry per section 6.5.3.4
997                             if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) )
998                             {
999                                 fail = fail && ( test != 0.0f);
1000                                 if( ! fail )
1001                                     err = 0.0f;
1002                             }
1003                         }
1004                     }
1005 
1006                     if( fabsf(err ) > maxError )
1007                     {
1008                         maxError = fabsf(err);
1009                         maxErrorVal = s[j];
1010                         maxErrorVal2 = s2[j];
1011                         maxErrorVal3 = s3[j];
1012                     }
1013 
1014                     if( fail )
1015                     {
1016                         vlog_error( "\nERROR: %sD%s: %f ulp error at {%a, %a, %a}: *%a vs. %a\n", f->name, sizeNames[k], err, s[j], s2[j], s3[j], ((double*) gOut_Ref)[j], test );
1017  error = -1;
1018  goto exit;
1019                     }
1020                 }
1021             }
1022         }
1023 */
1024         if( 0 == (i & 0x0fffffff) )
1025         {
1026             vlog("." );
1027             fflush(stdout);
1028         }
1029     }
1030 
1031     if( ! gSkipCorrectnessTesting )
1032     {
1033         if( gWimpyMode )
1034             vlog( "Wimp pass" );
1035         else
1036             vlog( "pass" );
1037     }
1038 
1039     if( gMeasureTimes )
1040     {
1041         //Init input array
1042         double *p = (double *)gIn;
1043         double *p2 = (double *)gIn2;
1044         double *p3 = (double *)gIn3;
1045         for( j = 0; j < bufferSize / sizeof( double ); j++ )
1046         {
1047             p[j] = DoubleFromUInt32(genrand_int32(d));
1048             p2[j] = DoubleFromUInt32(genrand_int32(d));
1049             p3[j] = DoubleFromUInt32(genrand_int32(d));
1050         }
1051         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
1052         {
1053             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
1054             return error;
1055         }
1056         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
1057         {
1058             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error );
1059             return error;
1060         }
1061         if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0, bufferSize, gIn3, 0, NULL, NULL) ))
1062         {
1063             vlog_error( "\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error );
1064             return error;
1065         }
1066 
1067 
1068         // Run the kernels
1069         for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
1070         {
1071             size_t vectorSize = sizeof( cl_double ) * sizeValues[j];
1072             size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;    // bufferSize / vectorSize  rounded up
1073             if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
1074             if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
1075             if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
1076             if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer3 ), &gInBuffer3 ) )) { LogBuildError(programs[j]); goto exit; }
1077 
1078             double sum = 0.0;
1079             double bestTime = INFINITY;
1080             for( k = 0; k < PERF_LOOP_COUNT; k++ )
1081             {
1082                 uint64_t startTime = GetTime();
1083                 if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
1084                 {
1085                     vlog_error( "FAILED -- could not execute kernel\n" );
1086                     goto exit;
1087                 }
1088 
1089                 // Make sure OpenCL is done
1090                 if( (error = clFinish(gQueue) ) )
1091                 {
1092                     vlog_error( "Error %d at clFinish\n", error );
1093                     goto exit;
1094                 }
1095 
1096                 uint64_t endTime = GetTime();
1097                 double time = SubtractTime( endTime, startTime );
1098                 sum += time;
1099                 if( time < bestTime )
1100                     bestTime = time;
1101             }
1102 
1103             if( gReportAverageTimes )
1104                 bestTime = sum / PERF_LOOP_COUNT;
1105             double clocksPerOp = bestTime * (double) gDeviceFrequency * gComputeDevices * gSimdSize * 1e6 / (bufferSize / sizeof( double ) );
1106             vlog_perf( clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sD%s", f->name, sizeNames[j] );
1107         }
1108         for( ; j < gMaxVectorSizeIndex; j++ )
1109             vlog( "\t     -- " );
1110     }
1111 
1112     if( ! gSkipCorrectnessTesting )
1113         vlog( "\t%8.2f @ {%a, %a, %a}", maxError, maxErrorVal, maxErrorVal2, maxErrorVal3 );
1114     vlog( "\n" );
1115 
1116 exit:
1117     // Release
1118     for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
1119     {
1120         clReleaseKernel(kernels[k]);
1121         clReleaseProgram(programs[k]);
1122     }
1123 
1124     return error;
1125 }
1126 
1127 
1128 
1129