• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>
7 #include <cfloat>
8 #include <cmath>
9 #include <functional>
10 #include <random>
11 #include <vector>
12 
13 #include <cpuinfo.h>
14 
15 #include <benchmark/benchmark.h>
16 #include "bench/dwconv.h"
17 #include "bench/utils.h"
18 #include <xnnpack/AlignedAllocator.h>
19 #include <xnnpack/common.h>
20 #include <xnnpack/dwconv.h>
21 #include <xnnpack/indirection.h>
22 #include <xnnpack/operator.h>
23 #include <xnnpack/pack.h>
24 #include <xnnpack/params-init.h>
25 #include <xnnpack/params.h>
26 
27 
DWConvBenchmark(benchmark::State & state,xnn_f32_dwconv_up_ukernel_function dwconv,uint32_t cr,uint32_t kr,benchmark::utils::IsaCheckFunction isa_check=nullptr)28 static void DWConvBenchmark(benchmark::State& state,
29   xnn_f32_dwconv_up_ukernel_function dwconv,
30   uint32_t cr, uint32_t kr,
31   benchmark::utils::IsaCheckFunction isa_check = nullptr)
32 {
33   if (!cpuinfo_initialize()) {
34     state.SkipWithError("cpuinfo initialization failed");
35     return;
36   }
37   if (isa_check && !isa_check(state)) {
38     return;
39   }
40 
41   const size_t input_height = state.range(0);
42   const size_t input_width = state.range(1);
43   const size_t kernel_height = state.range(2);
44   const size_t kernel_width = state.range(3);
45   const size_t padding_height = state.range(4);
46   const size_t padding_width = state.range(5);
47   const size_t subsampling = state.range(6);
48   const size_t dilation = state.range(7);
49   const size_t channels = state.range(8);
50 
51   const size_t kernel_size = kernel_height * kernel_width;
52   if (kernel_size != kr) {
53     state.SkipWithError("kernel size mismatch");
54     return;
55   }
56 
57   std::random_device random_device;
58   auto rng = std::mt19937(random_device());
59   auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
60 
61   const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1;
62   const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1;
63   const size_t padding_left = padding_width / 2;
64   const size_t padding_top = padding_height / 2;
65   const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1;
66   const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1;
67   const size_t output_size = output_height * output_width;
68   const size_t step_width = dilation == 1 ? subsampling : kernel_width;
69   const size_t step_height = kernel_size + (output_width - 1) * step_width * kernel_height;
70 
71   const size_t c_stride = benchmark::utils::RoundUp<size_t>(channels, cr);
72 
73   std::vector<float> a(channels * input_height * input_width + XNN_EXTRA_BYTES / sizeof(float));
74   std::generate(a.begin(), a.end(), std::ref(f32rng));
75   std::vector<float> k(channels * kernel_height * kernel_width);
76   std::generate(k.begin(), k.end(), std::ref(f32rng));
77   std::vector<float> b(channels);
78   std::generate(b.begin(), b.end(), std::ref(f32rng));
79 
80   std::vector<float> z(channels + XNN_EXTRA_BYTES / sizeof(float));
81 
82   const size_t w_elements = (kernel_size + 1) * c_stride;
83   const size_t i_elements = output_height * step_height;
84   const size_t c_elements = output_size * channels;
85   const size_t num_buffers = 1 +
86     benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
87       sizeof(float) * (w_elements + c_elements) + sizeof(void*) * i_elements);
88 
89   std::vector<float, AlignedAllocator<float, 32>> w(w_elements * num_buffers);
90   std::fill(w.begin(), w.end(), 0.0f);
91   xnn_pack_f32_dwconv_ghw_w(kernel_height, kernel_width, channels, cr,
92       k.data(), b.data(), w.data());
93   for (size_t n = 1; n < num_buffers; n++) {
94     std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements);
95   }
96 
97   std::vector<const float*> i(i_elements * num_buffers);
98   xnn_operator convolution_op = { };
99   convolution_op.indirection_buffer = reinterpret_cast<const void**>(i.data());
100   convolution_op.input              = a.data();
101   convolution_op.input_pixel_stride = channels;
102   convolution_op.zero_buffer        = z.data();
103   convolution_op.batch_size         = 1;
104   convolution_op.input_height       = input_height;
105   convolution_op.input_width        = input_width;
106   convolution_op.output_height      = output_height;
107   convolution_op.output_width       = output_width;
108   convolution_op.kernel_height      = kernel_height;
109   convolution_op.kernel_width       = kernel_width;
110   convolution_op.stride_height      = subsampling;
111   convolution_op.stride_width       = subsampling;
112   convolution_op.dilation_height    = dilation;
113   convolution_op.dilation_width     = dilation;
114   convolution_op.padding_top        = padding_top;
115   convolution_op.padding_left       = padding_left;
116 
117   xnn_indirection_init_dwconv2d(&convolution_op, 0, step_height, step_width, 2 /* log2(sizeof(float)) */);
118   for (size_t n = 1; n < num_buffers; n++) {
119     std::copy(i.cbegin(), i.cbegin() + i_elements, i.begin() + n * i_elements);
120   }
121 
122   std::vector<float> c(c_elements * num_buffers);
123   std::fill(c.begin(), c.end(), std::nanf(""));
124 
125   xnn_f32_output_params output_params =
126     xnn_init_f32_output_params(-std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());
127 
128   size_t buffer_index = 0;
129   for (auto _ : state) {
130     state.PauseTiming();
131     benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float));
132     buffer_index = (buffer_index + 1) % num_buffers;
133     state.ResumeTiming();
134 
135     for (uint32_t y = 0; y < output_height; y++) {
136       dwconv(channels, output_width,
137         i.data() + buffer_index * i_elements + step_height * y,
138         w.data() + buffer_index * w_elements,
139         c.data() + buffer_index * c_elements + y * output_width * channels,
140         kernel_height * step_width * sizeof(void*), 0,
141         &output_params);
142     }
143   }
144 
145   state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
146   state.counters["FLOPS"] = benchmark::Counter(
147     uint64_t(state.iterations()) * 2 * output_size * channels * kernel_size,
148     benchmark::Counter::kIsRate);
149 
150   state.counters["BYTES"] = benchmark::Counter(
151     uint64_t(state.iterations()) * (output_size + input_height * input_width + kernel_size + 1 /* bias */) * channels * sizeof(float),
152     benchmark::Counter::kIsRate);
153 }
154 
155 #if XNN_ARCH_ARM64 && XNN_ENABLE_ASSEMBLY
f32_dwconv_4x9__aarch64_neonfma(benchmark::State & state,const char * net)156   static void f32_dwconv_4x9__aarch64_neonfma(benchmark::State& state, const char* net) {
157     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up4x9__neon, 4, 9);
158   }
159 
f32_dwconv_4x9__aarch64_neonfma_cortex_a55(benchmark::State & state,const char * net)160   static void f32_dwconv_4x9__aarch64_neonfma_cortex_a55(benchmark::State& state, const char* net) {
161     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up4x9__neonfma, 4, 9);
162   }
163 
164   BENCHMARK_DWCONV(f32_dwconv_4x9__aarch64_neonfma)
BENCHMARK_DWCONV(f32_dwconv_4x9__aarch64_neonfma_cortex_a55)165   BENCHMARK_DWCONV(f32_dwconv_4x9__aarch64_neonfma_cortex_a55)
166 #endif  // XNN_ARCH_ARM64
167 
168 
169 #if XNN_ARCH_ARM || XNN_ARCH_ARM64
170   static void f32_dwconv_4x9__neon(benchmark::State& state, const char* net) {
171     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up4x9__neon, 4, 9,
172       benchmark::utils::CheckNEON);
173   }
174 
f32_dwconv_4x9__neonfma(benchmark::State & state,const char * net)175   static void f32_dwconv_4x9__neonfma(benchmark::State& state, const char* net) {
176     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up4x9__neonfma, 4, 9,
177       benchmark::utils::CheckNEONFMA);
178   }
179 
f32_dwconv_8x9__neonfma(benchmark::State & state,const char * net)180   static void f32_dwconv_8x9__neonfma(benchmark::State& state, const char* net) {
181     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up8x9__neonfma, 8, 9,
182       benchmark::utils::CheckNEONFMA);
183   }
184 
185   BENCHMARK_DWCONV(f32_dwconv_4x9__neon)
BENCHMARK_DWCONV(f32_dwconv_4x9__neonfma)186   BENCHMARK_DWCONV(f32_dwconv_4x9__neonfma)
187   BENCHMARK_DWCONV(f32_dwconv_8x9__neonfma)
188 #endif  // XNN_ARCH_ARM || XNN_ARCH_ARM64
189 
190 
191 #if XNN_ARCH_X86 || XNN_ARCH_X86_64
192   static void f32_dwconv_4x4__sse(benchmark::State& state, const char* net) {
193     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up4x4__sse, 4, 4);
194   }
195 
f32_dwconv_4x9__sse(benchmark::State & state,const char * net)196   static void f32_dwconv_4x9__sse(benchmark::State& state, const char* net) {
197     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up4x9__sse, 4, 9);
198   }
199 
f32_dwconv_4x25__sse(benchmark::State & state,const char * net)200   static void f32_dwconv_4x25__sse(benchmark::State& state, const char* net) {
201     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up4x25__sse, 4, 25);
202   }
203 
204   BENCHMARK_DWCONV(f32_dwconv_4x4__sse)
BENCHMARK_DWCONV(f32_dwconv_4x9__sse)205   BENCHMARK_DWCONV(f32_dwconv_4x9__sse)
206   BENCHMARK_DWCONV(f32_dwconv_4x25__sse)
207 #endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
208 
209 
210 #if !XNN_ARCH_WASM && !XNN_ARCH_ASMJS
211   static void f32_dwconv_4x4__psimd(benchmark::State& state, const char* net) {
212     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up4x4__psimd, 4, 4);
213   }
214 
f32_dwconv_4x9__psimd(benchmark::State & state,const char * net)215   static void f32_dwconv_4x9__psimd(benchmark::State& state, const char* net) {
216     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up4x9__psimd, 4, 9);
217   }
218 
f32_dwconv_4x25__psimd(benchmark::State & state,const char * net)219   static void f32_dwconv_4x25__psimd(benchmark::State& state, const char* net) {
220     DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up4x25__psimd, 4, 25);
221   }
222 
223   BENCHMARK_DWCONV(f32_dwconv_4x4__psimd)
BENCHMARK_DWCONV(f32_dwconv_4x9__psimd)224   BENCHMARK_DWCONV(f32_dwconv_4x9__psimd)
225   BENCHMARK_DWCONV(f32_dwconv_4x25__psimd)
226 #endif  // !XNN_ARCH_WASM && !XNN_ARCH_ASMJS
227 
228 
229 static void f32_dwconv_1x4__scalar(benchmark::State& state, const char* net) {
230   DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up1x4__scalar, 1, 4);
231 }
232 
f32_dwconv_1x9__scalar(benchmark::State & state,const char * net)233 static void f32_dwconv_1x9__scalar(benchmark::State& state, const char* net) {
234   DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up1x9__scalar, 1, 9);
235 }
236 
f32_dwconv_1x25__scalar(benchmark::State & state,const char * net)237 static void f32_dwconv_1x25__scalar(benchmark::State& state, const char* net) {
238   DWConvBenchmark(state, xnn_f32_dwconv_ukernel_up1x25__scalar, 1, 25);
239 }
240 
241 BENCHMARK_DWCONV(f32_dwconv_1x4__scalar)
242 BENCHMARK_DWCONV(f32_dwconv_1x9__scalar)
243 BENCHMARK_DWCONV(f32_dwconv_1x25__scalar)
244 
245 #ifndef XNNPACK_BENCHMARK_NO_MAIN
246 BENCHMARK_MAIN();
247 #endif
248