• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) Facebook, Inc. and its affiliates.
2 // All rights reserved.
3 //
4 // This source code is licensed under the BSD-style license found in the
5 // LICENSE file in the root directory of this source tree.
6 
7 #include <algorithm>
8 #include <cmath>
9 #include <functional>
10 #include <random>
11 #include <vector>
12 
13 #include <xnnpack.h>
14 
15 #include <benchmark/benchmark.h>
16 #include "bench/utils.h"
17 #ifdef BENCHMARK_TENSORFLOW_LITE
18 #include "flatbuffers/include/flatbuffers/flatbuffers.h"
19 #include "tensorflow/lite/interpreter.h"
20 #include "tensorflow/lite/kernels/register.h"
21 #include "tensorflow/lite/model.h"
22 #include "tensorflow/lite/schema/schema_generated.h"
23 #include "tensorflow/lite/version.h"
24 #endif  // BENCHMARK_TENSORFLOW_LITE
25 
26 
xnnpack_softmax_q8(benchmark::State & state)27 static void xnnpack_softmax_q8(benchmark::State& state) {
28   const size_t batch_size = static_cast<size_t>(state.range(0));
29   const size_t channels = static_cast<size_t>(state.range(1));
30 
31   std::random_device random_device;
32   auto rng = std::mt19937(random_device());
33   auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
34 
35   std::vector<uint8_t> input(batch_size * channels);
36   std::vector<uint8_t> output(batch_size * channels);
37   std::generate(input.begin(), input.end(), std::ref(u8rng));
38   std::fill(output.begin(), output.end(), 0xA5);
39 
40   xnn_status status = xnn_initialize(nullptr /* allocator */);
41   if (status != xnn_status_success) {
42     state.SkipWithError("failed to initialize XNNPACK");
43     return;
44   }
45 
46   xnn_operator_t softmax_op = nullptr;
47   status = xnn_create_softmax_nc_q8(
48     channels, channels /* input stride */, channels /* output stride */,
49     1.0f /* input scale */,
50     0 /* output zero point */, 1.0f / 256.0f /* output scale */,
51     0 /* flags */, &softmax_op);
52   if (status != xnn_status_success || softmax_op == nullptr) {
53     state.SkipWithError("failed to create SoftMax operator");
54     return;
55   }
56 
57   status = xnn_setup_softmax_nc_q8(
58     softmax_op,
59     batch_size,
60     input.data(), output.data(),
61     nullptr /* thread pool */);
62   if (status != xnn_status_success) {
63     state.SkipWithError("failed to setup SoftMax operator");
64     return;
65   }
66 
67   for (auto _ : state) {
68     status = xnn_run_operator(softmax_op, nullptr /* thread pool */);
69     if (status != xnn_status_success) {
70       state.SkipWithError("failed to run SoftMax operator");
71       return;
72     }
73   }
74 
75   status = xnn_delete_operator(softmax_op);
76   if (status != xnn_status_success) {
77     state.SkipWithError("failed to delete SoftMax operator");
78     return;
79   }
80 
81   state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
82 
83   const size_t elements_per_iteration = batch_size * channels;
84   state.counters["elements"] =
85     benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
86 
87   const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(uint8_t);
88   state.counters["bytes"] =
89     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
90 }
91 
xnnpack_softmax_f32(benchmark::State & state)92 static void xnnpack_softmax_f32(benchmark::State& state) {
93   const size_t batch_size = static_cast<size_t>(state.range(0));
94   const size_t channels = static_cast<size_t>(state.range(1));
95 
96   std::random_device random_device;
97   auto rng = std::mt19937(random_device());
98   auto f32rng = std::bind(std::uniform_real_distribution<float>(-100.0f, 100.0f), rng);
99 
100   std::vector<float> input(batch_size * channels + XNN_EXTRA_BYTES / sizeof(float));
101   std::vector<float> output(batch_size * channels);
102   std::generate(input.begin(), input.end(), std::ref(f32rng));
103   std::fill(output.begin(), output.end(), std::nanf(""));
104 
105   xnn_status status = xnn_initialize(nullptr /* allocator */);
106   if (status != xnn_status_success) {
107     state.SkipWithError("failed to initialize XNNPACK");
108     return;
109   }
110 
111   xnn_operator_t softmax_op = nullptr;
112   status = xnn_create_softmax_nc_f32(
113     channels, channels /* input stride */, channels /* output stride */,
114     0 /* flags */, &softmax_op);
115   if (status != xnn_status_success || softmax_op == nullptr) {
116     state.SkipWithError("failed to create SoftMax operator");
117     return;
118   }
119 
120   status = xnn_setup_softmax_nc_f32(
121     softmax_op,
122     batch_size,
123     input.data(), output.data(),
124     nullptr /* thread pool */);
125   if (status != xnn_status_success) {
126     state.SkipWithError("failed to setup SoftMax operator");
127     return;
128   }
129 
130   for (auto _ : state) {
131     status = xnn_run_operator(softmax_op, nullptr /* thread pool */);
132     if (status != xnn_status_success) {
133       state.SkipWithError("failed to run SoftMax operator");
134       return;
135     }
136   }
137 
138   status = xnn_delete_operator(softmax_op);
139   if (status != xnn_status_success) {
140     state.SkipWithError("failed to delete SoftMax operator");
141     return;
142   }
143 
144   state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
145 
146   const size_t elements_per_iteration = batch_size * channels;
147   state.counters["elements"] =
148     benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
149 
150   const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
151   state.counters["bytes"] =
152     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
153 }
154 
155 #ifdef BENCHMARK_TENSORFLOW_LITE
tflite_softmax_f32(benchmark::State & state)156 static void tflite_softmax_f32(benchmark::State& state) {
157   const size_t batch_size = state.range(0);
158   const size_t channels = state.range(1);
159 
160   std::random_device random_device;
161   auto rng = std::mt19937(random_device());
162   auto f32rng = std::bind(std::uniform_real_distribution<float>(-100.0f, 100.0f), rng);
163 
164   flatbuffers::FlatBufferBuilder builder;
165   flatbuffers::Offset<tflite::OperatorCode> operator_code =
166     tflite::CreateOperatorCode(builder, tflite::BuiltinOperator_SOFTMAX);
167 
168   flatbuffers::Offset<tflite::SoftmaxOptions> softmax_options =
169     tflite::CreateSoftmaxOptions(builder, 1.0f /* beta */);
170 
171   flatbuffers::Offset<tflite::Buffer> buffers[1] = {
172     tflite::CreateBuffer(builder, builder.CreateVector({})),
173   };
174 
175   const int32_t input_shape[4] = {
176     static_cast<int32_t>(batch_size),
177     static_cast<int32_t>(1 /* height */),
178     static_cast<int32_t>(1 /* width */),
179     static_cast<int32_t>(channels)
180   };
181   const int32_t output_shape[4] = {
182     static_cast<int32_t>(batch_size),
183     static_cast<int32_t>(1 /* height */),
184     static_cast<int32_t>(1 /* width */),
185     static_cast<int32_t>(channels)
186   };
187 
188   flatbuffers::Offset<tflite::Tensor> tensors[2] = {
189     tflite::CreateTensor(builder,
190                          builder.CreateVector<int32_t>(input_shape, 4),
191                          tflite::TensorType_FLOAT32),
192     tflite::CreateTensor(builder,
193                          builder.CreateVector<int32_t>(output_shape, 4),
194                          tflite::TensorType_FLOAT32),
195   };
196 
197   const int32_t op_inputs[1] = { 0 };
198   const int32_t op_outputs[1] = { 1 };
199   flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(
200       builder,
201       0 /* opcode_index */,
202       builder.CreateVector<int32_t>(op_inputs, 1),
203       builder.CreateVector<int32_t>(op_outputs, 1),
204       tflite::BuiltinOptions_SoftmaxOptions, softmax_options.Union());
205 
206   const int32_t graph_inputs[1] = { 0 };
207   const int32_t graph_outputs[1] = { 1 };
208   flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
209       builder,
210       builder.CreateVector(tensors, 2),
211       builder.CreateVector<int32_t>(graph_inputs, 1),
212       builder.CreateVector<int32_t>(graph_outputs, 1),
213       builder.CreateVector(&op, 1));
214 
215   flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Softmax model");
216 
217   flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
218       TFLITE_SCHEMA_VERSION,
219       builder.CreateVector(&operator_code, 1),
220       builder.CreateVector(&subgraph, 1),
221       description,
222       builder.CreateVector(buffers, 1));
223 
224   builder.Finish(model_buffer);
225 
226   const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
227   tflite::ops::builtin::BuiltinOpResolver resolver;
228   tflite::InterpreterBuilder interpreterBuilder(model, resolver);
229   std::unique_ptr<tflite::Interpreter> interpreter;
230   if (interpreterBuilder(&interpreter) != kTfLiteOk) {
231     state.SkipWithError("failed to create TFLite interpreter");
232     return;
233   }
234   if (interpreter == nullptr) {
235     state.SkipWithError("TFLite interpreter is null");
236     return;
237   }
238   interpreter->SetNumThreads(1);
239 
240   if (interpreter->AllocateTensors() != kTfLiteOk) {
241     state.SkipWithError("failed to allocate tensors");
242     return;
243   }
244 
245   std::generate(
246     interpreter->typed_tensor<float>(0),
247     interpreter->typed_tensor<float>(0) + batch_size * channels,
248     std::ref(f32rng));
249 
250   for (auto _ : state) {
251     if (interpreter->Invoke() != kTfLiteOk) {
252       state.SkipWithError("failed to invoke TFLite interpreter");
253       return;
254     }
255   }
256 
257   state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
258 
259   const size_t elements_per_iteration = batch_size * channels;
260   state.counters["elements"] =
261     benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
262 
263   const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
264   state.counters["bytes"] =
265     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
266 
267   interpreter.reset();
268 }
269 #endif  // BENCHMARK_TENSORFLOW_LITE
270 
CharacteristicArguments(benchmark::internal::Benchmark * b)271 static void CharacteristicArguments(benchmark::internal::Benchmark* b)
272 {
273   b->ArgNames({"N", "C"});
274 
275   // CIFAR-10
276   b->Args({1, 10});
277   // CIFAR-100 */
278   b->Args({1, 100});
279   // ImageNet-1K
280   b->Args({1, 1000});
281   // ImageNet-1K+1
282   b->Args({1, 1001});
283   // ImageNet-22K
284   b->Args({1, 21841});
285 }
286 
287 BENCHMARK(xnnpack_softmax_q8)->Apply(CharacteristicArguments)->UseRealTime();
288 BENCHMARK(xnnpack_softmax_f32)->Apply(CharacteristicArguments)->UseRealTime();
289 #ifdef BENCHMARK_TENSORFLOW_LITE
290 BENCHMARK(tflite_softmax_f32)->Apply(CharacteristicArguments)->UseRealTime();
291 #endif  // BENCHMARK_TENSORFLOW_LITE
292 
293 #ifndef XNNPACK_BENCHMARK_NO_MAIN
294 BENCHMARK_MAIN();
295 #endif
296