• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>
7 #include <cfloat>
8 #include <cmath>
9 #include <functional>
10 #include <random>
11 #include <vector>
12 
13 #include <benchmark/benchmark.h>
14 #include <fp16/fp16.h>
15 
16 #include <xnnpack/AlignedAllocator.h>
17 #include <xnnpack/common.h>
18 #include <xnnpack/math-stubs.h>
19 
20 
ExpError(benchmark::State & state,xnn_f32_unary_math_function exp,size_t tile_size)21 static void ExpError(benchmark::State& state,
22   xnn_f32_unary_math_function exp,
23   size_t tile_size)
24 {
25   // The smallest x for which expf(x) is non-zero (-0x1.9FE368p+6f).
26   const uint32_t min_input = 0xC2CFF1B4;
27   // The largest x for which expf(x) is finite (0x1.62E42Ep6f).
28   const uint32_t max_input = 0x42B17217;
29   // Number of tiles in one block of inputs/outputs. Combining multiple tiles in a block reduce function call overhead.
30   const size_t num_tiles = 100;
31 
32   double max_ulp_error = 0.0;
33   std::vector<float, AlignedAllocator<float, 64>> x(tile_size * num_tiles);
34   std::vector<float, AlignedAllocator<float, 64>> y(tile_size * num_tiles);
35   for (auto _ : state) {
36     for (uint32_t n = min_input; int32_t(n) < 0; n -= tile_size * num_tiles) {
37       for (uint32_t i = 0; i < tile_size * num_tiles; i++) {
38         x[i] = fp32_from_bits(std::max<uint32_t>(n - i, 0x80000000));
39       }
40       std::fill(y.begin(), y.end(), std::nanf(""));
41 
42       exp(tile_size * num_tiles * sizeof(float), x.data(), y.data());
43 
44       for (uint32_t i = 0; i < tile_size * num_tiles; i++) {
45         const double y_ref = std::exp(double(x[i]));
46         const double abs_error = std::abs(y_ref - double(y[i]));
47         const float y_abs = std::abs(y_ref);
48         const float y_ulp = fp32_from_bits(fp32_to_bits(y_abs) + 1) - y_abs;
49         max_ulp_error = std::max<double>(max_ulp_error, abs_error / y_ulp);
50       }
51     }
52     for (uint32_t n = 0; n < max_input; n += tile_size * num_tiles) {
53       for (uint32_t i = 0; i < tile_size * num_tiles; i++) {
54         x[i] = fp32_from_bits(std::min<uint32_t>(n + i, max_input));
55       }
56       std::fill(y.begin(), y.end(), std::nanf(""));
57 
58       exp(tile_size * num_tiles * sizeof(float), x.data(), y.data());
59 
60       for (uint32_t i = 0; i < tile_size * num_tiles; i++) {
61         const double y_ref = std::exp(double(x[i]));
62         const double abs_error = std::abs(y_ref - double(y[i]));
63         const float y_abs = std::abs(y_ref);
64         const float y_ulp = fp32_from_bits(fp32_to_bits(y_abs) + 1) - y_abs;
65         max_ulp_error = std::max<double>(max_ulp_error, abs_error / y_ulp);
66       }
67     }
68   }
69 
70   state.counters["ULPERROR"] = benchmark::Counter(max_ulp_error);
71 }
72 
73 #if XNN_ARCH_X86 || XNN_ARCH_X86_64
f32_exp__sse2_p5(benchmark::State & state)74   static void f32_exp__sse2_p5(benchmark::State& state) {
75     ExpError(state, xnn_math_f32_exp__sse2_p5, 4);
76   }
f32_exp__avx2_perm_p3(benchmark::State & state)77   static void f32_exp__avx2_perm_p3(benchmark::State& state) {
78     ExpError(state, xnn_math_f32_exp__avx2_perm_p3, 8);
79   }
f32_exp__avx2_perm_p4(benchmark::State & state)80   static void f32_exp__avx2_perm_p4(benchmark::State& state) {
81     ExpError(state, xnn_math_f32_exp__avx2_perm_p4, 8);
82   }
f32_exp__avx2_p5(benchmark::State & state)83   static void f32_exp__avx2_p5(benchmark::State& state) {
84     ExpError(state, xnn_math_f32_exp__avx2_p5, 8);
85   }
f32_exp__avx512f_perm2_p2(benchmark::State & state)86   static void f32_exp__avx512f_perm2_p2(benchmark::State& state) {
87     ExpError(state, xnn_math_f32_exp__avx512f_perm2_p2, 16);
88   }
f32_exp__avx512f_perm_p3(benchmark::State & state)89   static void f32_exp__avx512f_perm_p3(benchmark::State& state) {
90     ExpError(state, xnn_math_f32_exp__avx512f_perm_p3, 16);
91   }
f32_exp__avx512f_p5_scalef(benchmark::State & state)92   static void f32_exp__avx512f_p5_scalef(benchmark::State& state) {
93     ExpError(state, xnn_math_f32_exp__avx512f_p5_scalef, 16);
94   }
f32_exp__avx512f_p5(benchmark::State & state)95   static void f32_exp__avx512f_p5(benchmark::State& state) {
96     ExpError(state, xnn_math_f32_exp__avx512f_p5, 16);
97   }
98 
99   BENCHMARK(f32_exp__sse2_p5)->Unit(benchmark::kMillisecond)->Iterations(1);
100   BENCHMARK(f32_exp__avx2_perm_p4)->Unit(benchmark::kMillisecond)->Iterations(1);
101   BENCHMARK(f32_exp__avx2_perm_p3)->Unit(benchmark::kMillisecond)->Iterations(1);
102   BENCHMARK(f32_exp__avx2_p5)->Unit(benchmark::kMillisecond)->Iterations(1);
103   BENCHMARK(f32_exp__avx512f_perm2_p2)->Unit(benchmark::kMillisecond)->Iterations(1);
104   BENCHMARK(f32_exp__avx512f_perm_p3)->Unit(benchmark::kMillisecond)->Iterations(1);
105   BENCHMARK(f32_exp__avx512f_p5_scalef)->Unit(benchmark::kMillisecond)->Iterations(1);
106   BENCHMARK(f32_exp__avx512f_p5)->Unit(benchmark::kMillisecond)->Iterations(1);
107 #endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
108 
109 #if XNN_ARCH_ARM || XNN_ARCH_ARM64
f32_exp__neonfma_lut64_p2(benchmark::State & state)110   static void f32_exp__neonfma_lut64_p2(benchmark::State& state) {
111     ExpError(state, xnn_math_f32_exp__neonfma_lut64_p2, 4);
112   }
f32_exp__neonfma_p5(benchmark::State & state)113   static void f32_exp__neonfma_p5(benchmark::State& state) {
114     ExpError(state, xnn_math_f32_exp__neonfma_p5, 4);
115   }
116 
117   BENCHMARK(f32_exp__neonfma_lut64_p2)->Unit(benchmark::kMillisecond)->Iterations(1);
118   BENCHMARK(f32_exp__neonfma_p5)->Unit(benchmark::kMillisecond)->Iterations(1);
119 #endif  // XNN_ARCH_ARM || XNN_ARCH_ARM64
120 
121 #ifndef XNNPACK_BENCHMARK_NO_MAIN
122 BENCHMARK_MAIN();
123 #endif
124