1 // Auto-generated file. Do not edit!
2 // Template: src/f16-spmm/neonfp16arith.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/spmm.h>
15
16
xnn_f16_spmm_ukernel_8x1__neonfp16arith_unroll2(uint32_t m,uint32_t n,const void * restrict input,const void * restrict weights,const int32_t * restrict widx_dmap,const uint32_t * restrict nidx_nnzmap,void * restrict output,const struct xnn_f16_output_params params[restrict static1])17 void xnn_f16_spmm_ukernel_8x1__neonfp16arith_unroll2(
18 uint32_t m,
19 uint32_t n,
20 const void*restrict input,
21 const void*restrict weights,
22 const int32_t*restrict widx_dmap,
23 const uint32_t*restrict nidx_nnzmap,
24 void*restrict output,
25 const struct xnn_f16_output_params params[restrict static 1])
26 {
27 assert(m != 0);
28
29 const __fp16*restrict a = input;
30 __fp16*restrict c = output;
31
32 const float16x8_t vscale = vld1q_dup_f16((const __fp16*) ¶ms->scale);
33 const float16x8_t vmax = vld1q_dup_f16((const __fp16*) ¶ms->max);
34 const float16x8_t vmin = vld1q_dup_f16((const __fp16*) ¶ms->min);
35
36 size_t i = m;
37 while XNN_LIKELY(i >= 8) {
38 const __fp16*restrict w = weights;
39 const int32_t* dmap = widx_dmap;
40 const uint32_t* nnzmap = nidx_nnzmap;
41 size_t j = n;
42 do {
43 uint32_t nnz = *nnzmap++;
44 float16x8_t vacc01234567x0 = vld1q_dup_f16(w); w += 1;
45 float16x8_t vacc01234567x1 = vmovq_n_f16(0.0f);
46 for (; nnz >= 2; nnz -= 2) {
47 const intptr_t diff0 = dmap[0];
48 const intptr_t diff1 = dmap[1];
49 dmap += 2;
50 const float16x8_t va01234567x0 = vld1q_f16(a);
51 a = (const __fp16*restrict) ((uintptr_t) a + (uintptr_t) diff0);
52 const float16x8_t vb0 = vld1q_dup_f16(w); w += 1;
53 vacc01234567x0 = vfmaq_f16(vacc01234567x0, va01234567x0, vb0);
54 const float16x8_t va01234567x1 = vld1q_f16(a);
55 a = (const __fp16*restrict) ((uintptr_t) a + (uintptr_t) diff1);
56 const float16x8_t vb1 = vld1q_dup_f16(w); w += 1;
57 vacc01234567x1 = vfmaq_f16(vacc01234567x1, va01234567x1, vb1);
58 }
59 float16x8_t vacc01234567 = vacc01234567x0;
60 vacc01234567 = vaddq_f16(vacc01234567, vacc01234567x1);
61 if XNN_LIKELY(nnz != 0) {
62 do {
63 const intptr_t diff = *dmap++;
64 const float16x8_t va01234567 = vld1q_f16(a);
65 a = (const __fp16*restrict) ((uintptr_t) a + (uintptr_t) diff);
66 const float16x8_t vb = vld1q_dup_f16(w); w += 1;
67 vacc01234567 = vfmaq_f16(vacc01234567, va01234567, vb);
68 } while (--nnz != 0);
69 }
70 float16x8_t vout01234567 = vmulq_f16(vacc01234567, vscale);
71 vout01234567 = vminq_f16(vout01234567, vmax);
72 vout01234567 = vmaxq_f16(vout01234567, vmin);
73 vst1q_f16(c, vout01234567);
74 c += m;
75 } while (--j != 0);
76 c -= m * n;
77 c += 8;
78 a += 8;
79 i -= 8;
80 }
81 if XNN_UNLIKELY(i != 0) {
82 if (i & 4) {
83 const __fp16*restrict w = weights;
84 const int32_t* dmap = widx_dmap;
85 const uint32_t* nnzmap = nidx_nnzmap;
86 size_t j = n;
87 do {
88 uint32_t nnz = *nnzmap++;
89 float16x4_t vacc0123 = vld1_dup_f16(w); w += 1;
90 if XNN_LIKELY(nnz != 0) {
91 do {
92 const intptr_t diff = *dmap++;
93 const float16x4_t va0123 = vld1_f16(a);
94 a = (const __fp16*restrict) ((uintptr_t) a + (uintptr_t) diff);
95 const float16x4_t vb = vld1_dup_f16(w); w += 1;
96 vacc0123 = vfma_f16(vacc0123, va0123, vb);
97 } while (--nnz != 0);
98 }
99 float16x4_t vout0123 = vmin_f16(vacc0123, vget_low_f16(vmax));
100 vout0123 = vmax_f16(vout0123, vget_low_f16(vmin));
101 vst1_f16(c, vout0123);
102 c += m;
103 } while (--j != 0);
104 c -= m * n;
105 c += 4;
106 a += 4;
107 }
108 if (i & 2) {
109 const __fp16*restrict w = weights;
110 const int32_t* dmap = widx_dmap;
111 const uint32_t* nnzmap = nidx_nnzmap;
112 size_t j = n;
113 do {
114 uint32_t nnz = *nnzmap++;
115 float16x4_t vacc01 = vld1_dup_f16(w); w += 1;
116 if XNN_LIKELY(nnz != 0) {
117 do {
118 const intptr_t diff = *dmap++;
119 const float16x4_t va01 = vreinterpret_f32_f16(vld1_dup_f32(__builtin_assume_aligned(a, 1)));
120 a = (const __fp16*restrict) ((uintptr_t) a + (uintptr_t) diff);
121 const float16x4_t vb = vld1_dup_f16(w); w += 1;
122 vacc01 = vfma_f16(vacc01, va01, vb);
123 } while (--nnz != 0);
124 }
125 float16x4_t vout01 = vmin_f16(vacc01, vget_low_f16(vmax));
126 vout01 = vmax_f16(vout01, vget_low_f16(vmin));
127 vst1_lane_f32(__builtin_assume_aligned(c, 1), vreinterpret_f16_f32(vout01), 0);
128 c += m;
129 } while (--j != 0);
130 c -= m * n;
131 c += 2;
132 a += 2;
133 }
134 if (i & 1) {
135 const __fp16*restrict w = weights;
136 const int32_t* dmap = widx_dmap;
137 const uint32_t* nnzmap = nidx_nnzmap;
138 size_t j = n;
139 do {
140 uint32_t nnz = *nnzmap++;
141 float16x4_t vacc0 = vld1_dup_f16(w); w += 1;
142 if XNN_LIKELY(nnz != 0) {
143 do {
144 const intptr_t diff = *dmap++;
145 const float16x4_t va0 = vld1_dup_f16(a);
146 a = (const __fp16*restrict) ((uintptr_t) a + (uintptr_t) diff);
147 const float16x4_t vb = vld1_dup_f16(w); w += 1;
148 vacc0 = vfma_f16(vacc0, va0, vb);
149 } while (--nnz != 0);
150 }
151 float16x4_t vout0 = vmin_f16(vacc0, vget_low_f16(vmax));
152 vout0 = vmax_f16(vout0, vget_low_f16(vmin));
153 vst1_lane_f16(c, vout0, 0);
154 c += m;
155 } while (--j != 0);
156 c -= m * n;
157 c += 1;
158 a += 1;
159 }
160 }
161 }
162