• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddextexp/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 #include <math.h>
12 
13 #include <immintrin.h>
14 
15 #include <xnnpack/common.h>
16 #include <xnnpack/intrinsics-polyfill.h>
17 #include <xnnpack/raddextexp.h>
18 
19 
xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x192_acc3(size_t elements,const float * x,float * sum)20 void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x192_acc3(
21     size_t elements,
22     const float* x,
23     float* sum)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
28   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
29   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
30 
31   const __m512 vc0 = _mm512_set1_ps(1.0f);
32   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
33   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
34   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
35   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
36   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
37 
38   const __m512 vminus_inf = _mm512_set1_ps(-INFINITY);
39 
40   __m512 vaccv0 = _mm512_setzero_ps();
41   __m512 vaccv1 = _mm512_setzero_ps();
42   __m512 vaccv2 = _mm512_setzero_ps();
43   __m512 vacce0 = vminus_inf;
44   __m512 vacce1 = vminus_inf;
45   __m512 vacce2 = vminus_inf;
46   for (; elements >= 192 * sizeof(float); elements -= 192 * sizeof(float)) {
47     // Load 192 (12x16) inputs at a time.
48     const __m512 vx0 = _mm512_loadu_ps(x);
49     const __m512 vx1 = _mm512_loadu_ps(x + 16);
50     const __m512 vx2 = _mm512_loadu_ps(x + 32);
51     const __m512 vx3 = _mm512_loadu_ps(x + 48);
52     const __m512 vx4 = _mm512_loadu_ps(x + 64);
53     const __m512 vx5 = _mm512_loadu_ps(x + 80);
54     const __m512 vx6 = _mm512_loadu_ps(x + 96);
55     const __m512 vx7 = _mm512_loadu_ps(x + 112);
56     const __m512 vx8 = _mm512_loadu_ps(x + 128);
57     const __m512 vx9 = _mm512_loadu_ps(x + 144);
58     const __m512 vx10 = _mm512_loadu_ps(x + 160);
59     const __m512 vx11 = _mm512_loadu_ps(x + 176);
60     x += 192;
61 
62     // Compute reduced argument elements := round(x / log(2)).
63     const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
64     const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
65     const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
66     const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
67     const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
68     const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
69     const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
70     const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
71     const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0);
72     const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0);
73     const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0);
74     const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0);
75 
76     // Compute reduced argument t := x - elements * log(2).
77     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
78     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
79     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
80     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
81     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
82     __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
83     __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
84     __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
85     __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
86     __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8);
87     __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9);
88     __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10);
89     __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11);
90 
91     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
92     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
93     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
94     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
95     vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
96     vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
97     vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
98     vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
99     vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8);
100     vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9);
101     vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10);
102     vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11);
103 
104     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
105     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
106     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
107     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
108     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
109     __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
110     __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
111     __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
112     __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
113     __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4);
114     __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4);
115     __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4);
116     __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4);
117 
118     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
119     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
120     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
121     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
122     vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
123     vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
124     vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
125     vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
126     vp8 = _mm512_fmadd_ps(vp8, vt8, vc3);
127     vp9 = _mm512_fmadd_ps(vp9, vt9, vc3);
128     vp10 = _mm512_fmadd_ps(vp10, vt10, vc3);
129     vp11 = _mm512_fmadd_ps(vp11, vt11, vc3);
130 
131     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
132     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
133     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
134     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
135     vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
136     vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
137     vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
138     vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
139     vp8 = _mm512_fmadd_ps(vp8, vt8, vc2);
140     vp9 = _mm512_fmadd_ps(vp9, vt9, vc2);
141     vp10 = _mm512_fmadd_ps(vp10, vt10, vc2);
142     vp11 = _mm512_fmadd_ps(vp11, vt11, vc2);
143 
144     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
145     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
146     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
147     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
148     vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
149     vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
150     vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
151     vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
152     vp8 = _mm512_fmadd_ps(vp8, vt8, vc1);
153     vp9 = _mm512_fmadd_ps(vp9, vt9, vc1);
154     vp10 = _mm512_fmadd_ps(vp10, vt10, vc1);
155     vp11 = _mm512_fmadd_ps(vp11, vt11, vc1);
156 
157     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
158     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
159     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
160     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
161     vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
162     vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
163     vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
164     vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
165     vp8 = _mm512_fmadd_ps(vp8, vt8, vc0);
166     vp9 = _mm512_fmadd_ps(vp9, vt9, vc0);
167     vp10 = _mm512_fmadd_ps(vp10, vt10, vc0);
168     vp11 = _mm512_fmadd_ps(vp11, vt11, vc0);
169 
170     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where
171     //  - vnX is "exponent"
172     //  - vpX is "mantissa"
173     //
174     // exp2(ae) * av + exp2(be) * bv =
175     //   = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv
176     //   = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv)
177     //   = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv)
178     //
179     // For computational efficiency we add three "extended" floating-point numbers at a time.
180     __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0);
181     __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1);
182     __m512 vmax_e2 = _mm512_max_ps(vacce2, vn2);
183     vmax_e0 = _mm512_max_ps(vmax_e0, vn3);
184     vmax_e1 = _mm512_max_ps(vmax_e1, vn4);
185     vmax_e2 = _mm512_max_ps(vmax_e2, vn5);
186     vmax_e0 = _mm512_max_ps(vmax_e0, vn6);
187     vmax_e1 = _mm512_max_ps(vmax_e1, vn7);
188     vmax_e2 = _mm512_max_ps(vmax_e2, vn8);
189     vmax_e0 = _mm512_max_ps(vmax_e0, vn9);
190     vmax_e1 = _mm512_max_ps(vmax_e1, vn10);
191     vmax_e2 = _mm512_max_ps(vmax_e2, vn11);
192 
193     const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0);
194     const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1);
195     const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_e2);
196     const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0);
197     const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1);
198     const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e2);
199     const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e0);
200     const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e1);
201     const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e2);
202     const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0);
203     const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e1);
204     const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e2);
205     const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e0);
206     const __m512 vdelta_e10 = _mm512_sub_ps(vn10, vmax_e1);
207     const __m512 vdelta_e11 = _mm512_sub_ps(vn11, vmax_e2);
208 
209     // Update accumulated "mantissa" and "exponent" values
210     vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0);
211     vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1);
212     vaccv2 = _mm512_scalef_ps(vaccv2, vdelta_acce2);
213     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0));
214     vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1));
215     vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp2, vdelta_e2));
216     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp3, vdelta_e3));
217     vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp4, vdelta_e4));
218     vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp5, vdelta_e5));
219     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6));
220     vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp7, vdelta_e7));
221     vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp8, vdelta_e8));
222     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp9, vdelta_e9));
223     vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp10, vdelta_e10));
224     vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp11, vdelta_e11));
225 
226     vacce0 = vmax_e0;
227     vacce1 = vmax_e1;
228     vacce2 = vmax_e2;
229   }
230 
231   // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums.
232   const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1);
233   const __m512 vmax_acce2 = vacce2;
234   const __m512 vmax_acce012 = _mm512_max_ps(vmax_acce01, vmax_acce2);
235 
236   const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce012);
237   const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce012);
238   const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_acce012);
239 
240   __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0);
241   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1));
242   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv2, vdelta_acce2));
243   __m512 vacce = vmax_acce012;
244 
245   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
246     // Load 16 inputs at a time.
247     const __m512 vx = _mm512_loadu_ps(x);
248     x += 16;
249 
250     // Compute reduced argument elements := round(x / log(2)).
251     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
252 
253     // Compute reduced argument t := x - elements * log(2).
254     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
255     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
256     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
257 
258     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
259     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
260     vp = _mm512_fmadd_ps(vp, vt, vc3);
261     vp = _mm512_fmadd_ps(vp, vt, vc2);
262     vp = _mm512_fmadd_ps(vp, vt, vc1);
263     vp = _mm512_fmadd_ps(vp, vt, vc0);
264 
265     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
266     const __m512 vmax_e = _mm512_max_ps(vacce, vn);
267     const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
268     const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
269     vaccv = _mm512_scalef_ps(vaccv, vdelta_acce);
270     vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e));
271 
272     vacce = vmax_e;
273   }
274   if XNN_UNLIKELY(elements != 0) {
275     // Prepare mask for valid 32-bit elements (depends on elements).
276     elements >>= 2 /* log2(sizeof(float)) */;
277     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
278 
279     // Load up to 15 inputs at a time.
280     const __m512 vx = _mm512_maskz_loadu_ps(vmask, x);
281 
282     // Compute reduced argument elements := round(x / log(2)).
283     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
284 
285     // Compute reduced argument t := x - elements * log(2).
286     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
287     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
288     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
289 
290     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
291     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
292     vp = _mm512_fmadd_ps(vp, vt, vc3);
293     vp = _mm512_fmadd_ps(vp, vt, vc2);
294     vp = _mm512_fmadd_ps(vp, vt, vc1);
295     vp = _mm512_fmadd_ps(vp, vt, vc0);
296 
297     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
298     const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn);
299     const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
300     const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
301     vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce);
302     vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e));
303     vacce = vmax_e;
304   }
305 
306   // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum.
307   const float vmax_acce = _mm512_reduce_max_ps(vacce);
308   const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce));
309 
310   sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce));
311   sum[1] = vmax_acce;
312 
313   _mm256_zeroupper();
314 }
315