• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddextexp/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 #include <math.h>
12 
13 #include <immintrin.h>
14 
15 #include <xnnpack/common.h>
16 #include <xnnpack/intrinsics-polyfill.h>
17 #include <xnnpack/raddextexp.h>
18 
19 
xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x192_acc6(size_t elements,const float * x,float * sum)20 void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x192_acc6(
21     size_t elements,
22     const float* x,
23     float* sum)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
28   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
29   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
30 
31   const __m512 vc0 = _mm512_set1_ps(1.0f);
32   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
33   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
34   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
35   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
36   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
37 
38   const __m512 vminus_inf = _mm512_set1_ps(-INFINITY);
39 
40   __m512 vaccv0 = _mm512_setzero_ps();
41   __m512 vaccv1 = _mm512_setzero_ps();
42   __m512 vaccv2 = _mm512_setzero_ps();
43   __m512 vaccv3 = _mm512_setzero_ps();
44   __m512 vaccv4 = _mm512_setzero_ps();
45   __m512 vaccv5 = _mm512_setzero_ps();
46   __m512 vacce0 = vminus_inf;
47   __m512 vacce1 = vminus_inf;
48   __m512 vacce2 = vminus_inf;
49   __m512 vacce3 = vminus_inf;
50   __m512 vacce4 = vminus_inf;
51   __m512 vacce5 = vminus_inf;
52   for (; elements >= 192 * sizeof(float); elements -= 192 * sizeof(float)) {
53     // Load 192 (12x16) inputs at a time.
54     const __m512 vx0 = _mm512_loadu_ps(x);
55     const __m512 vx1 = _mm512_loadu_ps(x + 16);
56     const __m512 vx2 = _mm512_loadu_ps(x + 32);
57     const __m512 vx3 = _mm512_loadu_ps(x + 48);
58     const __m512 vx4 = _mm512_loadu_ps(x + 64);
59     const __m512 vx5 = _mm512_loadu_ps(x + 80);
60     const __m512 vx6 = _mm512_loadu_ps(x + 96);
61     const __m512 vx7 = _mm512_loadu_ps(x + 112);
62     const __m512 vx8 = _mm512_loadu_ps(x + 128);
63     const __m512 vx9 = _mm512_loadu_ps(x + 144);
64     const __m512 vx10 = _mm512_loadu_ps(x + 160);
65     const __m512 vx11 = _mm512_loadu_ps(x + 176);
66     x += 192;
67 
68     // Compute reduced argument elements := round(x / log(2)).
69     const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
70     const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
71     const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
72     const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
73     const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
74     const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
75     const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
76     const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
77     const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0);
78     const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0);
79     const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0);
80     const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0);
81 
82     // Compute reduced argument t := x - elements * log(2).
83     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
84     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
85     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
86     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
87     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
88     __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
89     __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
90     __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
91     __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
92     __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8);
93     __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9);
94     __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10);
95     __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11);
96 
97     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
98     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
99     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
100     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
101     vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
102     vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
103     vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
104     vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
105     vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8);
106     vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9);
107     vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10);
108     vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11);
109 
110     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
111     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
112     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
113     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
114     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
115     __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
116     __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
117     __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
118     __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
119     __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4);
120     __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4);
121     __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4);
122     __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4);
123 
124     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
125     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
126     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
127     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
128     vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
129     vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
130     vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
131     vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
132     vp8 = _mm512_fmadd_ps(vp8, vt8, vc3);
133     vp9 = _mm512_fmadd_ps(vp9, vt9, vc3);
134     vp10 = _mm512_fmadd_ps(vp10, vt10, vc3);
135     vp11 = _mm512_fmadd_ps(vp11, vt11, vc3);
136 
137     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
138     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
139     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
140     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
141     vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
142     vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
143     vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
144     vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
145     vp8 = _mm512_fmadd_ps(vp8, vt8, vc2);
146     vp9 = _mm512_fmadd_ps(vp9, vt9, vc2);
147     vp10 = _mm512_fmadd_ps(vp10, vt10, vc2);
148     vp11 = _mm512_fmadd_ps(vp11, vt11, vc2);
149 
150     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
151     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
152     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
153     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
154     vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
155     vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
156     vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
157     vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
158     vp8 = _mm512_fmadd_ps(vp8, vt8, vc1);
159     vp9 = _mm512_fmadd_ps(vp9, vt9, vc1);
160     vp10 = _mm512_fmadd_ps(vp10, vt10, vc1);
161     vp11 = _mm512_fmadd_ps(vp11, vt11, vc1);
162 
163     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
164     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
165     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
166     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
167     vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
168     vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
169     vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
170     vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
171     vp8 = _mm512_fmadd_ps(vp8, vt8, vc0);
172     vp9 = _mm512_fmadd_ps(vp9, vt9, vc0);
173     vp10 = _mm512_fmadd_ps(vp10, vt10, vc0);
174     vp11 = _mm512_fmadd_ps(vp11, vt11, vc0);
175 
176     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where
177     //  - vnX is "exponent"
178     //  - vpX is "mantissa"
179     //
180     // exp2(ae) * av + exp2(be) * bv =
181     //   = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv
182     //   = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv)
183     //   = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv)
184     //
185     // For computational efficiency we add three "extended" floating-point numbers at a time.
186     __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0);
187     __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1);
188     __m512 vmax_e2 = _mm512_max_ps(vacce2, vn2);
189     __m512 vmax_e3 = _mm512_max_ps(vacce3, vn3);
190     __m512 vmax_e4 = _mm512_max_ps(vacce4, vn4);
191     __m512 vmax_e5 = _mm512_max_ps(vacce5, vn5);
192     vmax_e0 = _mm512_max_ps(vmax_e0, vn6);
193     vmax_e1 = _mm512_max_ps(vmax_e1, vn7);
194     vmax_e2 = _mm512_max_ps(vmax_e2, vn8);
195     vmax_e3 = _mm512_max_ps(vmax_e3, vn9);
196     vmax_e4 = _mm512_max_ps(vmax_e4, vn10);
197     vmax_e5 = _mm512_max_ps(vmax_e5, vn11);
198 
199     const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0);
200     const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1);
201     const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_e2);
202     const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_e3);
203     const __m512 vdelta_acce4 = _mm512_sub_ps(vacce4, vmax_e4);
204     const __m512 vdelta_acce5 = _mm512_sub_ps(vacce5, vmax_e5);
205     const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0);
206     const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1);
207     const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e2);
208     const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e3);
209     const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e4);
210     const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e5);
211     const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0);
212     const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e1);
213     const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e2);
214     const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e3);
215     const __m512 vdelta_e10 = _mm512_sub_ps(vn10, vmax_e4);
216     const __m512 vdelta_e11 = _mm512_sub_ps(vn11, vmax_e5);
217 
218     // Update accumulated "mantissa" and "exponent" values
219     vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0);
220     vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1);
221     vaccv2 = _mm512_scalef_ps(vaccv2, vdelta_acce2);
222     vaccv3 = _mm512_scalef_ps(vaccv3, vdelta_acce3);
223     vaccv4 = _mm512_scalef_ps(vaccv4, vdelta_acce4);
224     vaccv5 = _mm512_scalef_ps(vaccv5, vdelta_acce5);
225     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0));
226     vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1));
227     vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp2, vdelta_e2));
228     vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp3, vdelta_e3));
229     vaccv4 = _mm512_add_ps(vaccv4, _mm512_scalef_ps(vp4, vdelta_e4));
230     vaccv5 = _mm512_add_ps(vaccv5, _mm512_scalef_ps(vp5, vdelta_e5));
231     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6));
232     vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp7, vdelta_e7));
233     vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp8, vdelta_e8));
234     vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp9, vdelta_e9));
235     vaccv4 = _mm512_add_ps(vaccv4, _mm512_scalef_ps(vp10, vdelta_e10));
236     vaccv5 = _mm512_add_ps(vaccv5, _mm512_scalef_ps(vp11, vdelta_e11));
237 
238     vacce0 = vmax_e0;
239     vacce1 = vmax_e1;
240     vacce2 = vmax_e2;
241     vacce3 = vmax_e3;
242     vacce4 = vmax_e4;
243     vacce5 = vmax_e5;
244   }
245 
246   // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums.
247   const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1);
248   const __m512 vmax_acce23 = _mm512_max_ps(vacce2, vacce3);
249   const __m512 vmax_acce45 = _mm512_max_ps(vacce4, vacce5);
250   const __m512 vmax_acce0123 = _mm512_max_ps(vmax_acce01, vmax_acce23);
251   const __m512 vmax_acce012345 = _mm512_max_ps(vmax_acce0123, vmax_acce45);
252 
253   const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce012345);
254   const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce012345);
255   const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_acce012345);
256   const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_acce012345);
257   const __m512 vdelta_acce4 = _mm512_sub_ps(vacce4, vmax_acce012345);
258   const __m512 vdelta_acce5 = _mm512_sub_ps(vacce5, vmax_acce012345);
259 
260   __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0);
261   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1));
262   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv2, vdelta_acce2));
263   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv3, vdelta_acce3));
264   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv4, vdelta_acce4));
265   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv5, vdelta_acce5));
266   __m512 vacce = vmax_acce012345;
267 
268   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
269     // Load 16 inputs at a time.
270     const __m512 vx = _mm512_loadu_ps(x);
271     x += 16;
272 
273     // Compute reduced argument elements := round(x / log(2)).
274     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
275 
276     // Compute reduced argument t := x - elements * log(2).
277     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
278     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
279     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
280 
281     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
282     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
283     vp = _mm512_fmadd_ps(vp, vt, vc3);
284     vp = _mm512_fmadd_ps(vp, vt, vc2);
285     vp = _mm512_fmadd_ps(vp, vt, vc1);
286     vp = _mm512_fmadd_ps(vp, vt, vc0);
287 
288     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
289     const __m512 vmax_e = _mm512_max_ps(vacce, vn);
290     const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
291     const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
292     vaccv = _mm512_scalef_ps(vaccv, vdelta_acce);
293     vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e));
294 
295     vacce = vmax_e;
296   }
297   if XNN_UNLIKELY(elements != 0) {
298     // Prepare mask for valid 32-bit elements (depends on elements).
299     elements >>= 2 /* log2(sizeof(float)) */;
300     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
301 
302     // Load up to 15 inputs at a time.
303     const __m512 vx = _mm512_maskz_loadu_ps(vmask, x);
304 
305     // Compute reduced argument elements := round(x / log(2)).
306     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
307 
308     // Compute reduced argument t := x - elements * log(2).
309     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
310     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
311     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
312 
313     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
314     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
315     vp = _mm512_fmadd_ps(vp, vt, vc3);
316     vp = _mm512_fmadd_ps(vp, vt, vc2);
317     vp = _mm512_fmadd_ps(vp, vt, vc1);
318     vp = _mm512_fmadd_ps(vp, vt, vc0);
319 
320     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
321     const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn);
322     const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
323     const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
324     vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce);
325     vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e));
326     vacce = vmax_e;
327   }
328 
329   // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum.
330   const float vmax_acce = _mm512_reduce_max_ps(vacce);
331   const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce));
332 
333   sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce));
334   sum[1] = vmax_acce;
335 
336   _mm256_zeroupper();
337 }
338