• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/intrinsics-polyfill.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__avx512f_p5_scalef_x128_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__avx512f_p5_scalef_x128_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
28   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
29   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
30 
31   const __m512 vc0 = _mm512_set1_ps(1.0f);
32   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
33   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
34   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
35   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
36   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
37 
38   const __m512 vi_max = _mm512_set1_ps(max);
39 
40   __m512 vacc0 = _mm512_setzero_ps();
41   __m512 vacc1 = _mm512_setzero_ps();
42   for (; elements >= 128 * sizeof(float); elements -= 128 * sizeof(float)) {
43     // Load 128 (8x16) inputs at a time.
44     const __m512 vi0 = _mm512_loadu_ps(input);
45     const __m512 vi1 = _mm512_loadu_ps(input + 16);
46     const __m512 vi2 = _mm512_loadu_ps(input + 32);
47     const __m512 vi3 = _mm512_loadu_ps(input + 48);
48     const __m512 vi4 = _mm512_loadu_ps(input + 64);
49     const __m512 vi5 = _mm512_loadu_ps(input + 80);
50     const __m512 vi6 = _mm512_loadu_ps(input + 96);
51     const __m512 vi7 = _mm512_loadu_ps(input + 112);
52     input += 128;
53 
54     // Subtract maximum input x := i - i_max.
55     const __m512 vx0 = _mm512_sub_ps(vi0, vi_max);
56     const __m512 vx1 = _mm512_sub_ps(vi1, vi_max);
57     const __m512 vx2 = _mm512_sub_ps(vi2, vi_max);
58     const __m512 vx3 = _mm512_sub_ps(vi3, vi_max);
59     const __m512 vx4 = _mm512_sub_ps(vi4, vi_max);
60     const __m512 vx5 = _mm512_sub_ps(vi5, vi_max);
61     const __m512 vx6 = _mm512_sub_ps(vi6, vi_max);
62     const __m512 vx7 = _mm512_sub_ps(vi7, vi_max);
63 
64     // Compute reduced argument elements := round(x / log(2)).
65     const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
66     const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
67     const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
68     const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
69     const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
70     const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
71     const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
72     const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
73 
74     // Compute reduced argument t := x - elements * log(2).
75     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
76     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
77     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
78     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
79     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
80     __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
81     __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
82     __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
83     __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
84 
85     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
86     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
87     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
88     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
89     vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
90     vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
91     vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
92     vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
93 
94     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
95     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
96     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
97     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
98     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
99     __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
100     __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
101     __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
102     __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
103 
104     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
105     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
106     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
107     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
108     vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
109     vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
110     vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
111     vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
112 
113     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
114     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
115     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
116     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
117     vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
118     vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
119     vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
120     vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
121 
122     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
123     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
124     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
125     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
126     vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
127     vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
128     vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
129     vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
130 
131     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
132     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
133     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
134     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
135     vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
136     vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
137     vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
138     vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
139 
140     // Reconstruct the final f value:
141     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
142     //     = 2**elements * p
143     const __m512 vf0 = _mm512_scalef_ps(vp0, vn0);
144     const __m512 vf1 = _mm512_scalef_ps(vp1, vn1);
145     const __m512 vf2 = _mm512_scalef_ps(vp2, vn2);
146     const __m512 vf3 = _mm512_scalef_ps(vp3, vn3);
147     const __m512 vf4 = _mm512_scalef_ps(vp4, vn4);
148     const __m512 vf5 = _mm512_scalef_ps(vp5, vn5);
149     const __m512 vf6 = _mm512_scalef_ps(vp6, vn6);
150     const __m512 vf7 = _mm512_scalef_ps(vp7, vn7);
151 
152     // Store 128 (8x16) outputs at a time.
153     _mm512_storeu_ps(output, vf0);
154     _mm512_storeu_ps(output + 16, vf1);
155     _mm512_storeu_ps(output + 32, vf2);
156     _mm512_storeu_ps(output + 48, vf3);
157     _mm512_storeu_ps(output + 64, vf4);
158     _mm512_storeu_ps(output + 80, vf5);
159     _mm512_storeu_ps(output + 96, vf6);
160     _mm512_storeu_ps(output + 112, vf7);
161     output += 128;
162 
163     // Accumulate computed exponents.
164     vacc0 = _mm512_add_ps(vacc0, vf0);
165     vacc1 = _mm512_add_ps(vacc1, vf1);
166     vacc0 = _mm512_add_ps(vacc0, vf2);
167     vacc1 = _mm512_add_ps(vacc1, vf3);
168     vacc0 = _mm512_add_ps(vacc0, vf4);
169     vacc1 = _mm512_add_ps(vacc1, vf5);
170     vacc0 = _mm512_add_ps(vacc0, vf6);
171     vacc1 = _mm512_add_ps(vacc1, vf7);
172   }
173   // Add up all accumulators to vacc0
174   vacc0 = _mm512_add_ps(vacc0, vacc1);
175 
176   __m512 vacc = vacc0;
177   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
178     // Load 16 inputs at a time.
179     const __m512 vi = _mm512_loadu_ps(input);
180     input += 16;
181 
182     // Subtract maximum input x := i - i_max.
183     const __m512 vx = _mm512_sub_ps(vi, vi_max);
184 
185     // Compute reduced argument elements := round(x / log(2)).
186     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
187 
188     // Compute reduced argument t := x - elements * log(2).
189     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
190     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
191     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
192 
193     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
194     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
195     vp = _mm512_fmadd_ps(vp, vt, vc3);
196     vp = _mm512_fmadd_ps(vp, vt, vc2);
197     vp = _mm512_fmadd_ps(vp, vt, vc1);
198     vp = _mm512_fmadd_ps(vp, vt, vc0);
199 
200     // Reconstruct the final f value:
201     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
202     //     = 2**elements * p
203     const __m512 vf = _mm512_scalef_ps(vp, vn);
204 
205     // Store 16 outputs at a time.
206     _mm512_storeu_ps(output, vf);
207     output += 16;
208 
209     // Accumulate computed exponents.
210     vacc = _mm512_add_ps(vacc, vf);
211   }
212   if (elements != 0) {
213     // Prepare mask for valid 32-bit elements (depends on elements).
214     elements >>= 2 /* log2(sizeof(float)) */;
215     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
216 
217     // Load up to 15 inputs at a time.
218     const __m512 vi = _mm512_maskz_loadu_ps(vmask, input);
219 
220     // Subtract maximum input x := i - i_max.
221     const __m512 vx = _mm512_sub_ps(vi, vi_max);
222 
223     // Compute reduced argument elements := round(x / log(2)).
224     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
225 
226     // Compute reduced argument t := x - elements * log(2).
227     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
228     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
229     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
230 
231     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
232     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
233     vp = _mm512_fmadd_ps(vp, vt, vc3);
234     vp = _mm512_fmadd_ps(vp, vt, vc2);
235     vp = _mm512_fmadd_ps(vp, vt, vc1);
236     vp = _mm512_fmadd_ps(vp, vt, vc0);
237 
238     // Reconstruct the final f value:
239     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
240     //     = 2**elements * p
241     const __m512 vf = _mm512_scalef_ps(vp, vn);
242 
243     // Store up to 15 outputs at a time.
244     _mm512_mask_storeu_ps(output, vmask, vf);
245 
246     // Accumulate computed exponents.
247     vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf);
248   }
249   *sum = _mm512_reduce_add_ps(vacc);
250 }
251