• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/intrinsics-polyfill.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__avx512f_p5_scalef_x128_acc4(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__avx512f_p5_scalef_x128_acc4(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
28   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
29   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
30 
31   const __m512 vc0 = _mm512_set1_ps(1.0f);
32   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
33   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
34   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
35   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
36   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
37 
38   const __m512 vi_max = _mm512_set1_ps(max);
39 
40   __m512 vacc0 = _mm512_setzero_ps();
41   __m512 vacc1 = _mm512_setzero_ps();
42   __m512 vacc2 = _mm512_setzero_ps();
43   __m512 vacc3 = _mm512_setzero_ps();
44   for (; elements >= 128 * sizeof(float); elements -= 128 * sizeof(float)) {
45     // Load 128 (8x16) inputs at a time.
46     const __m512 vi0 = _mm512_loadu_ps(input);
47     const __m512 vi1 = _mm512_loadu_ps(input + 16);
48     const __m512 vi2 = _mm512_loadu_ps(input + 32);
49     const __m512 vi3 = _mm512_loadu_ps(input + 48);
50     const __m512 vi4 = _mm512_loadu_ps(input + 64);
51     const __m512 vi5 = _mm512_loadu_ps(input + 80);
52     const __m512 vi6 = _mm512_loadu_ps(input + 96);
53     const __m512 vi7 = _mm512_loadu_ps(input + 112);
54     input += 128;
55 
56     // Subtract maximum input x := i - i_max.
57     const __m512 vx0 = _mm512_sub_ps(vi0, vi_max);
58     const __m512 vx1 = _mm512_sub_ps(vi1, vi_max);
59     const __m512 vx2 = _mm512_sub_ps(vi2, vi_max);
60     const __m512 vx3 = _mm512_sub_ps(vi3, vi_max);
61     const __m512 vx4 = _mm512_sub_ps(vi4, vi_max);
62     const __m512 vx5 = _mm512_sub_ps(vi5, vi_max);
63     const __m512 vx6 = _mm512_sub_ps(vi6, vi_max);
64     const __m512 vx7 = _mm512_sub_ps(vi7, vi_max);
65 
66     // Compute reduced argument elements := round(x / log(2)).
67     const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
68     const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
69     const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
70     const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
71     const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
72     const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
73     const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
74     const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
75 
76     // Compute reduced argument t := x - elements * log(2).
77     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
78     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
79     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
80     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
81     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
82     __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
83     __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
84     __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
85     __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
86 
87     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
88     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
89     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
90     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
91     vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
92     vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
93     vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
94     vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
95 
96     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
97     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
98     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
99     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
100     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
101     __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
102     __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
103     __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
104     __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
105 
106     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
107     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
108     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
109     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
110     vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
111     vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
112     vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
113     vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
114 
115     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
116     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
117     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
118     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
119     vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
120     vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
121     vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
122     vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
123 
124     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
125     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
126     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
127     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
128     vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
129     vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
130     vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
131     vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
132 
133     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
134     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
135     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
136     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
137     vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
138     vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
139     vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
140     vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
141 
142     // Reconstruct the final f value:
143     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
144     //     = 2**elements * p
145     const __m512 vf0 = _mm512_scalef_ps(vp0, vn0);
146     const __m512 vf1 = _mm512_scalef_ps(vp1, vn1);
147     const __m512 vf2 = _mm512_scalef_ps(vp2, vn2);
148     const __m512 vf3 = _mm512_scalef_ps(vp3, vn3);
149     const __m512 vf4 = _mm512_scalef_ps(vp4, vn4);
150     const __m512 vf5 = _mm512_scalef_ps(vp5, vn5);
151     const __m512 vf6 = _mm512_scalef_ps(vp6, vn6);
152     const __m512 vf7 = _mm512_scalef_ps(vp7, vn7);
153 
154     // Store 128 (8x16) outputs at a time.
155     _mm512_storeu_ps(output, vf0);
156     _mm512_storeu_ps(output + 16, vf1);
157     _mm512_storeu_ps(output + 32, vf2);
158     _mm512_storeu_ps(output + 48, vf3);
159     _mm512_storeu_ps(output + 64, vf4);
160     _mm512_storeu_ps(output + 80, vf5);
161     _mm512_storeu_ps(output + 96, vf6);
162     _mm512_storeu_ps(output + 112, vf7);
163     output += 128;
164 
165     // Accumulate computed exponents.
166     vacc0 = _mm512_add_ps(vacc0, vf0);
167     vacc1 = _mm512_add_ps(vacc1, vf1);
168     vacc2 = _mm512_add_ps(vacc2, vf2);
169     vacc3 = _mm512_add_ps(vacc3, vf3);
170     vacc0 = _mm512_add_ps(vacc0, vf4);
171     vacc1 = _mm512_add_ps(vacc1, vf5);
172     vacc2 = _mm512_add_ps(vacc2, vf6);
173     vacc3 = _mm512_add_ps(vacc3, vf7);
174   }
175   // Add up all accumulators to vacc0
176   vacc0 = _mm512_add_ps(vacc0, vacc1);
177   vacc2 = _mm512_add_ps(vacc2, vacc3);
178   vacc0 = _mm512_add_ps(vacc0, vacc2);
179 
180   __m512 vacc = vacc0;
181   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
182     // Load 16 inputs at a time.
183     const __m512 vi = _mm512_loadu_ps(input);
184     input += 16;
185 
186     // Subtract maximum input x := i - i_max.
187     const __m512 vx = _mm512_sub_ps(vi, vi_max);
188 
189     // Compute reduced argument elements := round(x / log(2)).
190     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
191 
192     // Compute reduced argument t := x - elements * log(2).
193     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
194     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
195     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
196 
197     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
198     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
199     vp = _mm512_fmadd_ps(vp, vt, vc3);
200     vp = _mm512_fmadd_ps(vp, vt, vc2);
201     vp = _mm512_fmadd_ps(vp, vt, vc1);
202     vp = _mm512_fmadd_ps(vp, vt, vc0);
203 
204     // Reconstruct the final f value:
205     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
206     //     = 2**elements * p
207     const __m512 vf = _mm512_scalef_ps(vp, vn);
208 
209     // Store 16 outputs at a time.
210     _mm512_storeu_ps(output, vf);
211     output += 16;
212 
213     // Accumulate computed exponents.
214     vacc = _mm512_add_ps(vacc, vf);
215   }
216   if (elements != 0) {
217     // Prepare mask for valid 32-bit elements (depends on elements).
218     elements >>= 2 /* log2(sizeof(float)) */;
219     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
220 
221     // Load up to 15 inputs at a time.
222     const __m512 vi = _mm512_maskz_loadu_ps(vmask, input);
223 
224     // Subtract maximum input x := i - i_max.
225     const __m512 vx = _mm512_sub_ps(vi, vi_max);
226 
227     // Compute reduced argument elements := round(x / log(2)).
228     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
229 
230     // Compute reduced argument t := x - elements * log(2).
231     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
232     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
233     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
234 
235     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
236     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
237     vp = _mm512_fmadd_ps(vp, vt, vc3);
238     vp = _mm512_fmadd_ps(vp, vt, vc2);
239     vp = _mm512_fmadd_ps(vp, vt, vc1);
240     vp = _mm512_fmadd_ps(vp, vt, vc0);
241 
242     // Reconstruct the final f value:
243     //   f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
244     //     = 2**elements * p
245     const __m512 vf = _mm512_scalef_ps(vp, vn);
246 
247     // Store up to 15 outputs at a time.
248     _mm512_mask_storeu_ps(output, vmask, vf);
249 
250     // Accumulate computed exponents.
251     vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf);
252   }
253   *sum = _mm512_reduce_add_ps(vacc);
254 }
255