• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x16_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x16_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33   const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34 
35   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40 
41   const float32x4_t vi_max = vdupq_n_f32(max);
42 
43   float32x4_t vacc0 = vmovq_n_f32(0.0f);
44   float32x4_t vacc1 = vmovq_n_f32(0.0f);
45   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
46     // Load 16 (4x4) inputs at a time.
47     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
48     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
49     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
50     const float32x4_t viCDEF = vld1q_f32(input); input += 4;
51 
52     // Subtract maximum input x := i - i_max. This implies x <= 0.
53     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
54     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
55     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
56     const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
57 
58     // Compute reduced argument n := round(x / log(2)).
59     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
60     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
62     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
63     // of the algorithm.
64     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
65     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
66     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
67     float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e);
68 
69     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
70     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
71     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
72     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
73     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
74     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
75 
76     // Subtract the large number back to get final n := round(x / log(2)).
77     vn0123 = vsubq_f32(vn0123, vmagic_bias);
78     vn4567 = vsubq_f32(vn4567, vmagic_bias);
79     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
80     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
81 
82     // Compute reduced argument t := z - n * log(2).
83     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
84     float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
85     float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
86     float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
87     float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
88 
89     vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
90     vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
91     vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
92     vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
93 
94     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
95     float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
96     float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
97     float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
98     float32x4_t vpCDEF = vmlaq_f32(vc4, vc5, vtCDEF);
99 
100     vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
101     vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
102     vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
103     vpCDEF = vmlaq_f32(vc3, vpCDEF, vtCDEF);
104 
105     vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
106     vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
107     vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
108     vpCDEF = vmlaq_f32(vc2, vpCDEF, vtCDEF);
109 
110     vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
111     vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
112     vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
113     vpCDEF = vmlaq_f32(vc1, vpCDEF, vtCDEF);
114 
115     // Reconstruct the final f value:
116     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
117     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
118     //     = s + (t * s) * p
119     vt0123 = vmulq_f32(vt0123, vs0123);
120     vt4567 = vmulq_f32(vt4567, vs4567);
121     vt89AB = vmulq_f32(vt89AB, vs89AB);
122     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
123 
124     float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
125     float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
126     float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
127     float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vpCDEF, vtCDEF);
128 
129     // For inputs below denormal cutoff, replace output with +0.0f.
130     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
131     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
132     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
133     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
134     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
135 
136     // Store 16 (4x4) outputs at a time.
137     vst1q_f32(output, vf0123); output += 4;
138     vst1q_f32(output, vf4567); output += 4;
139     vst1q_f32(output, vf89AB); output += 4;
140     vst1q_f32(output, vfCDEF); output += 4;
141 
142     // Accumulate computed exponents.
143     vacc0 = vaddq_f32(vacc0, vf0123);
144     vacc0 = vaddq_f32(vacc0, vf4567);
145     vacc0 = vaddq_f32(vacc0, vf89AB);
146     vacc0 = vaddq_f32(vacc0, vfCDEF);
147   }
148   // Add up all accumulators to vacc0
149   vacc0 = vaddq_f32(vacc0, vacc1);
150 
151   float32x4_t vacc = vacc0;
152   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
153     // Load 4 inputs at a time.
154     const float32x4_t vi = vld1q_f32(input); input += 4;
155 
156     // Subtract maximum input x := i - i_max. This implies x <= 0.
157     const float32x4_t vx = vsubq_f32(vi, vi_max);
158 
159     // Compute reduced argument n := round(x / log(2)).
160     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
161     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
162     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
163     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
164     // of the algorithm.
165     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
166 
167     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
168     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
169     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
170 
171     // Subtract the large number back to get final n := round(x / log(2)).
172     vn = vsubq_f32(vn, vmagic_bias);
173 
174     // Compute reduced argument t := z - n * log(2).
175     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
176     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
177     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
178 
179     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
180     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
181     vp = vmlaq_f32(vc3, vp, vt);
182     vp = vmlaq_f32(vc2, vp, vt);
183     vp = vmlaq_f32(vc1, vp, vt);
184 
185     // Reconstruct the final f value:
186     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
187     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
188     //     = s + (t * s) * p
189     vt = vmulq_f32(vt, vs);
190     float32x4_t vf = vmlaq_f32(vs, vp, vt);
191 
192     // For inputs below denormal cutoff, replace output with +0.0f.
193     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
194     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
195 
196     // Store 4 outputs at a time.
197     vst1q_f32(output, vf); output += 4;
198 
199     // Accumulate computed exponents.
200     vacc = vaddq_f32(vacc, vf);
201   }
202 #if XNN_ARCH_ARM64
203   float vacc_lo = vaddvq_f32(vacc);
204 #else
205   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
206 #endif
207   if (elements != 0) {
208     assert(elements >= 1 * sizeof(float));
209     assert(elements <= 3 * sizeof(float));
210     // Load 4 inputs at a time.
211     const float32x4_t vi = vld1q_f32(input); input += 4;
212 
213     // Subtract maximum input x := i - i_max. This implies x <= 0.
214     const float32x4_t vx = vsubq_f32(vi, vi_max);
215 
216     // Compute reduced argument n := round(x / log(2)).
217     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
218     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
219     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
220     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
221     // of the algorithm.
222     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
223 
224     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
225     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
226     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
227 
228     // Subtract the large number back to get final n := round(x / log(2)).
229     vn = vsubq_f32(vn, vmagic_bias);
230 
231     // Compute reduced argument t := z - n * log(2).
232     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
233     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
234     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
235 
236     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
237     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
238     vp = vmlaq_f32(vc3, vp, vt);
239     vp = vmlaq_f32(vc2, vp, vt);
240     vp = vmlaq_f32(vc1, vp, vt);
241 
242     // Reconstruct the final f value:
243     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
244     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
245     //     = s + (t * s) * p
246     vt = vmulq_f32(vt, vs);
247     float32x4_t vf = vmlaq_f32(vs, vp, vt);
248 
249     // For inputs below denormal cutoff, replace output with +0.0f.
250     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
251     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
252 
253     float32x2_t vf_lo = vget_low_f32(vf);
254     if (elements & (2 * sizeof(float))) {
255       // Store 2 outputs at a time.
256       vst1_f32(output, vf_lo); output += 2;
257 
258       // Accumulate 2 computed exponents.
259       #if XNN_ARCH_ARM64
260         vacc_lo += vaddv_f32(vf_lo);
261       #else
262         vacc_lo = vadd_f32(vacc_lo, vf_lo);
263       #endif
264 
265       vf_lo = vget_high_f32(vf);
266     }
267     if (elements & (1 * sizeof(float))) {
268       // Store 1 output at a time.
269       vst1_lane_f32(output, vf_lo, 0);
270 
271       // Accumulate 1 computed exponent.
272       #if XNN_ARCH_ARM64
273         vacc_lo += vget_lane_f32(vf_lo, 0);
274       #else
275         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
276       #endif
277     }
278   }
279   // Reduce 4 elements in the SIMD register
280 #if XNN_ARCH_ARM64
281   *sum = vacc_lo;
282 #else
283   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
284 #endif
285 }
286