1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x16_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x16_acc2(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max)
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33 const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34
35 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40
41 const float32x4_t vi_max = vdupq_n_f32(max);
42
43 float32x4_t vacc0 = vmovq_n_f32(0.0f);
44 float32x4_t vacc1 = vmovq_n_f32(0.0f);
45 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
46 // Load 16 (4x4) inputs at a time.
47 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
48 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
49 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
50 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
51
52 // Subtract maximum input x := i - i_max. This implies x <= 0.
53 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
54 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
55 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
56 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
57
58 // Compute reduced argument n := round(x / log(2)).
59 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
60 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
62 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
63 // of the algorithm.
64 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
65 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
66 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
67 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e);
68
69 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
70 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
71 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
72 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
73 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
74 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
75
76 // Subtract the large number back to get final n := round(x / log(2)).
77 vn0123 = vsubq_f32(vn0123, vmagic_bias);
78 vn4567 = vsubq_f32(vn4567, vmagic_bias);
79 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
80 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
81
82 // Compute reduced argument t := z - n * log(2).
83 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
84 float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
85 float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
86 float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
87 float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
88
89 vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
90 vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
91 vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
92 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
93
94 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
95 float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
96 float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
97 float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
98 float32x4_t vpCDEF = vmlaq_f32(vc4, vc5, vtCDEF);
99
100 vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
101 vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
102 vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
103 vpCDEF = vmlaq_f32(vc3, vpCDEF, vtCDEF);
104
105 vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
106 vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
107 vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
108 vpCDEF = vmlaq_f32(vc2, vpCDEF, vtCDEF);
109
110 vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
111 vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
112 vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
113 vpCDEF = vmlaq_f32(vc1, vpCDEF, vtCDEF);
114
115 // Reconstruct the final f value:
116 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
117 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
118 // = s + (t * s) * p
119 vt0123 = vmulq_f32(vt0123, vs0123);
120 vt4567 = vmulq_f32(vt4567, vs4567);
121 vt89AB = vmulq_f32(vt89AB, vs89AB);
122 vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
123
124 float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
125 float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
126 float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
127 float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vpCDEF, vtCDEF);
128
129 // For inputs below denormal cutoff, replace output with +0.0f.
130 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
131 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
132 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
133 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
134 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
135
136 // Store 16 (4x4) outputs at a time.
137 vst1q_f32(output, vf0123); output += 4;
138 vst1q_f32(output, vf4567); output += 4;
139 vst1q_f32(output, vf89AB); output += 4;
140 vst1q_f32(output, vfCDEF); output += 4;
141
142 // Accumulate computed exponents.
143 vacc0 = vaddq_f32(vacc0, vf0123);
144 vacc0 = vaddq_f32(vacc0, vf4567);
145 vacc0 = vaddq_f32(vacc0, vf89AB);
146 vacc0 = vaddq_f32(vacc0, vfCDEF);
147 }
148 // Add up all accumulators to vacc0
149 vacc0 = vaddq_f32(vacc0, vacc1);
150
151 float32x4_t vacc = vacc0;
152 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
153 // Load 4 inputs at a time.
154 const float32x4_t vi = vld1q_f32(input); input += 4;
155
156 // Subtract maximum input x := i - i_max. This implies x <= 0.
157 const float32x4_t vx = vsubq_f32(vi, vi_max);
158
159 // Compute reduced argument n := round(x / log(2)).
160 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
161 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
162 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
163 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
164 // of the algorithm.
165 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
166
167 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
168 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
169 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
170
171 // Subtract the large number back to get final n := round(x / log(2)).
172 vn = vsubq_f32(vn, vmagic_bias);
173
174 // Compute reduced argument t := z - n * log(2).
175 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
176 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
177 vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
178
179 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
180 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
181 vp = vmlaq_f32(vc3, vp, vt);
182 vp = vmlaq_f32(vc2, vp, vt);
183 vp = vmlaq_f32(vc1, vp, vt);
184
185 // Reconstruct the final f value:
186 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
187 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
188 // = s + (t * s) * p
189 vt = vmulq_f32(vt, vs);
190 float32x4_t vf = vmlaq_f32(vs, vp, vt);
191
192 // For inputs below denormal cutoff, replace output with +0.0f.
193 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
194 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
195
196 // Store 4 outputs at a time.
197 vst1q_f32(output, vf); output += 4;
198
199 // Accumulate computed exponents.
200 vacc = vaddq_f32(vacc, vf);
201 }
202 #if XNN_ARCH_ARM64
203 float vacc_lo = vaddvq_f32(vacc);
204 #else
205 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
206 #endif
207 if (elements != 0) {
208 assert(elements >= 1 * sizeof(float));
209 assert(elements <= 3 * sizeof(float));
210 // Load 4 inputs at a time.
211 const float32x4_t vi = vld1q_f32(input); input += 4;
212
213 // Subtract maximum input x := i - i_max. This implies x <= 0.
214 const float32x4_t vx = vsubq_f32(vi, vi_max);
215
216 // Compute reduced argument n := round(x / log(2)).
217 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
218 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
219 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
220 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
221 // of the algorithm.
222 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
223
224 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
225 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
226 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
227
228 // Subtract the large number back to get final n := round(x / log(2)).
229 vn = vsubq_f32(vn, vmagic_bias);
230
231 // Compute reduced argument t := z - n * log(2).
232 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
233 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
234 vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
235
236 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
237 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
238 vp = vmlaq_f32(vc3, vp, vt);
239 vp = vmlaq_f32(vc2, vp, vt);
240 vp = vmlaq_f32(vc1, vp, vt);
241
242 // Reconstruct the final f value:
243 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
244 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
245 // = s + (t * s) * p
246 vt = vmulq_f32(vt, vs);
247 float32x4_t vf = vmlaq_f32(vs, vp, vt);
248
249 // For inputs below denormal cutoff, replace output with +0.0f.
250 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
251 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
252
253 float32x2_t vf_lo = vget_low_f32(vf);
254 if (elements & (2 * sizeof(float))) {
255 // Store 2 outputs at a time.
256 vst1_f32(output, vf_lo); output += 2;
257
258 // Accumulate 2 computed exponents.
259 #if XNN_ARCH_ARM64
260 vacc_lo += vaddv_f32(vf_lo);
261 #else
262 vacc_lo = vadd_f32(vacc_lo, vf_lo);
263 #endif
264
265 vf_lo = vget_high_f32(vf);
266 }
267 if (elements & (1 * sizeof(float))) {
268 // Store 1 output at a time.
269 vst1_lane_f32(output, vf_lo, 0);
270
271 // Accumulate 1 computed exponent.
272 #if XNN_ARCH_ARM64
273 vacc_lo += vget_lane_f32(vf_lo, 0);
274 #else
275 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
276 #endif
277 }
278 }
279 // Reduce 4 elements in the SIMD register
280 #if XNN_ARCH_ARM64
281 *sum = vacc_lo;
282 #else
283 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
284 #endif
285 }
286