• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x16_acc4(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x16_acc4(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33   const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34 
35   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40 
41   const float32x4_t vi_max = vdupq_n_f32(max);
42 
43   float32x4_t vacc0 = vmovq_n_f32(0.0f);
44   float32x4_t vacc1 = vmovq_n_f32(0.0f);
45   float32x4_t vacc2 = vmovq_n_f32(0.0f);
46   float32x4_t vacc3 = vmovq_n_f32(0.0f);
47   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
48     // Load 16 (4x4) inputs at a time.
49     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
50     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
51     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
52     const float32x4_t viCDEF = vld1q_f32(input); input += 4;
53 
54     // Subtract maximum input x := i - i_max. This implies x <= 0.
55     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
56     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
57     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
58     const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
59 
60     // Compute reduced argument n := round(x / log(2)).
61     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
62     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
64     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
65     // of the algorithm.
66     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
67     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
68     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
69     float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e);
70 
71     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
72     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
73     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
74     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
75     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
76     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
77 
78     // Subtract the large number back to get final n := round(x / log(2)).
79     vn0123 = vsubq_f32(vn0123, vmagic_bias);
80     vn4567 = vsubq_f32(vn4567, vmagic_bias);
81     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
82     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
83 
84     // Compute reduced argument t := z - n * log(2).
85     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
86     float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
87     float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
88     float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
89     float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
90 
91     vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
92     vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
93     vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
94     vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
95 
96     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
97     float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
98     float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
99     float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
100     float32x4_t vpCDEF = vmlaq_f32(vc4, vc5, vtCDEF);
101 
102     vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
103     vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
104     vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
105     vpCDEF = vmlaq_f32(vc3, vpCDEF, vtCDEF);
106 
107     vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
108     vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
109     vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
110     vpCDEF = vmlaq_f32(vc2, vpCDEF, vtCDEF);
111 
112     vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
113     vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
114     vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
115     vpCDEF = vmlaq_f32(vc1, vpCDEF, vtCDEF);
116 
117     // Reconstruct the final f value:
118     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
119     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
120     //     = s + (t * s) * p
121     vt0123 = vmulq_f32(vt0123, vs0123);
122     vt4567 = vmulq_f32(vt4567, vs4567);
123     vt89AB = vmulq_f32(vt89AB, vs89AB);
124     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
125 
126     float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
127     float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
128     float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
129     float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vpCDEF, vtCDEF);
130 
131     // For inputs below denormal cutoff, replace output with +0.0f.
132     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
133     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
134     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
135     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
136     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
137 
138     // Store 16 (4x4) outputs at a time.
139     vst1q_f32(output, vf0123); output += 4;
140     vst1q_f32(output, vf4567); output += 4;
141     vst1q_f32(output, vf89AB); output += 4;
142     vst1q_f32(output, vfCDEF); output += 4;
143 
144     // Accumulate computed exponents.
145     vacc0 = vaddq_f32(vacc0, vf0123);
146     vacc0 = vaddq_f32(vacc0, vf4567);
147     vacc0 = vaddq_f32(vacc0, vf89AB);
148     vacc0 = vaddq_f32(vacc0, vfCDEF);
149   }
150   // Add up all accumulators to vacc0
151   vacc0 = vaddq_f32(vacc0, vacc1);
152   vacc2 = vaddq_f32(vacc2, vacc3);
153   vacc0 = vaddq_f32(vacc0, vacc2);
154 
155   float32x4_t vacc = vacc0;
156   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
157     // Load 4 inputs at a time.
158     const float32x4_t vi = vld1q_f32(input); input += 4;
159 
160     // Subtract maximum input x := i - i_max. This implies x <= 0.
161     const float32x4_t vx = vsubq_f32(vi, vi_max);
162 
163     // Compute reduced argument n := round(x / log(2)).
164     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
165     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
166     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
167     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
168     // of the algorithm.
169     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
170 
171     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
172     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
173     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
174 
175     // Subtract the large number back to get final n := round(x / log(2)).
176     vn = vsubq_f32(vn, vmagic_bias);
177 
178     // Compute reduced argument t := z - n * log(2).
179     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
180     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
181     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
182 
183     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
184     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
185     vp = vmlaq_f32(vc3, vp, vt);
186     vp = vmlaq_f32(vc2, vp, vt);
187     vp = vmlaq_f32(vc1, vp, vt);
188 
189     // Reconstruct the final f value:
190     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
191     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
192     //     = s + (t * s) * p
193     vt = vmulq_f32(vt, vs);
194     float32x4_t vf = vmlaq_f32(vs, vp, vt);
195 
196     // For inputs below denormal cutoff, replace output with +0.0f.
197     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
198     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
199 
200     // Store 4 outputs at a time.
201     vst1q_f32(output, vf); output += 4;
202 
203     // Accumulate computed exponents.
204     vacc = vaddq_f32(vacc, vf);
205   }
206 #if XNN_ARCH_ARM64
207   float vacc_lo = vaddvq_f32(vacc);
208 #else
209   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
210 #endif
211   if (elements != 0) {
212     assert(elements >= 1 * sizeof(float));
213     assert(elements <= 3 * sizeof(float));
214     // Load 4 inputs at a time.
215     const float32x4_t vi = vld1q_f32(input); input += 4;
216 
217     // Subtract maximum input x := i - i_max. This implies x <= 0.
218     const float32x4_t vx = vsubq_f32(vi, vi_max);
219 
220     // Compute reduced argument n := round(x / log(2)).
221     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
222     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
223     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
224     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
225     // of the algorithm.
226     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
227 
228     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
229     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
230     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
231 
232     // Subtract the large number back to get final n := round(x / log(2)).
233     vn = vsubq_f32(vn, vmagic_bias);
234 
235     // Compute reduced argument t := z - n * log(2).
236     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
237     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
238     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
239 
240     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
241     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
242     vp = vmlaq_f32(vc3, vp, vt);
243     vp = vmlaq_f32(vc2, vp, vt);
244     vp = vmlaq_f32(vc1, vp, vt);
245 
246     // Reconstruct the final f value:
247     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
248     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
249     //     = s + (t * s) * p
250     vt = vmulq_f32(vt, vs);
251     float32x4_t vf = vmlaq_f32(vs, vp, vt);
252 
253     // For inputs below denormal cutoff, replace output with +0.0f.
254     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
255     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
256 
257     float32x2_t vf_lo = vget_low_f32(vf);
258     if (elements & (2 * sizeof(float))) {
259       // Store 2 outputs at a time.
260       vst1_f32(output, vf_lo); output += 2;
261 
262       // Accumulate 2 computed exponents.
263       #if XNN_ARCH_ARM64
264         vacc_lo += vaddv_f32(vf_lo);
265       #else
266         vacc_lo = vadd_f32(vacc_lo, vf_lo);
267       #endif
268 
269       vf_lo = vget_high_f32(vf);
270     }
271     if (elements & (1 * sizeof(float))) {
272       // Store 1 output at a time.
273       vst1_lane_f32(output, vf_lo, 0);
274 
275       // Accumulate 1 computed exponent.
276       #if XNN_ARCH_ARM64
277         vacc_lo += vget_lane_f32(vf_lo, 0);
278       #else
279         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
280       #endif
281     }
282   }
283   // Reduce 4 elements in the SIMD register
284 #if XNN_ARCH_ARM64
285   *sum = vacc_lo;
286 #else
287   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
288 #endif
289 }
290