1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x16_acc4(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x16_acc4(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max)
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33 const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34
35 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40
41 const float32x4_t vi_max = vdupq_n_f32(max);
42
43 float32x4_t vacc0 = vmovq_n_f32(0.0f);
44 float32x4_t vacc1 = vmovq_n_f32(0.0f);
45 float32x4_t vacc2 = vmovq_n_f32(0.0f);
46 float32x4_t vacc3 = vmovq_n_f32(0.0f);
47 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
48 // Load 16 (4x4) inputs at a time.
49 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
50 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
51 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
52 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
53
54 // Subtract maximum input x := i - i_max. This implies x <= 0.
55 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
56 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
57 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
58 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
59
60 // Compute reduced argument n := round(x / log(2)).
61 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
62 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
64 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
65 // of the algorithm.
66 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
67 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
68 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
69 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e);
70
71 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
72 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
73 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
74 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
75 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
76 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
77
78 // Subtract the large number back to get final n := round(x / log(2)).
79 vn0123 = vsubq_f32(vn0123, vmagic_bias);
80 vn4567 = vsubq_f32(vn4567, vmagic_bias);
81 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
82 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
83
84 // Compute reduced argument t := z - n * log(2).
85 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
86 float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
87 float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
88 float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
89 float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
90
91 vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
92 vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
93 vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
94 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
95
96 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
97 float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
98 float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
99 float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
100 float32x4_t vpCDEF = vmlaq_f32(vc4, vc5, vtCDEF);
101
102 vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
103 vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
104 vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
105 vpCDEF = vmlaq_f32(vc3, vpCDEF, vtCDEF);
106
107 vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
108 vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
109 vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
110 vpCDEF = vmlaq_f32(vc2, vpCDEF, vtCDEF);
111
112 vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
113 vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
114 vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
115 vpCDEF = vmlaq_f32(vc1, vpCDEF, vtCDEF);
116
117 // Reconstruct the final f value:
118 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
119 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
120 // = s + (t * s) * p
121 vt0123 = vmulq_f32(vt0123, vs0123);
122 vt4567 = vmulq_f32(vt4567, vs4567);
123 vt89AB = vmulq_f32(vt89AB, vs89AB);
124 vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
125
126 float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
127 float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
128 float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
129 float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vpCDEF, vtCDEF);
130
131 // For inputs below denormal cutoff, replace output with +0.0f.
132 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
133 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
134 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
135 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
136 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
137
138 // Store 16 (4x4) outputs at a time.
139 vst1q_f32(output, vf0123); output += 4;
140 vst1q_f32(output, vf4567); output += 4;
141 vst1q_f32(output, vf89AB); output += 4;
142 vst1q_f32(output, vfCDEF); output += 4;
143
144 // Accumulate computed exponents.
145 vacc0 = vaddq_f32(vacc0, vf0123);
146 vacc0 = vaddq_f32(vacc0, vf4567);
147 vacc0 = vaddq_f32(vacc0, vf89AB);
148 vacc0 = vaddq_f32(vacc0, vfCDEF);
149 }
150 // Add up all accumulators to vacc0
151 vacc0 = vaddq_f32(vacc0, vacc1);
152 vacc2 = vaddq_f32(vacc2, vacc3);
153 vacc0 = vaddq_f32(vacc0, vacc2);
154
155 float32x4_t vacc = vacc0;
156 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
157 // Load 4 inputs at a time.
158 const float32x4_t vi = vld1q_f32(input); input += 4;
159
160 // Subtract maximum input x := i - i_max. This implies x <= 0.
161 const float32x4_t vx = vsubq_f32(vi, vi_max);
162
163 // Compute reduced argument n := round(x / log(2)).
164 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
165 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
166 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
167 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
168 // of the algorithm.
169 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
170
171 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
172 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
173 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
174
175 // Subtract the large number back to get final n := round(x / log(2)).
176 vn = vsubq_f32(vn, vmagic_bias);
177
178 // Compute reduced argument t := z - n * log(2).
179 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
180 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
181 vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
182
183 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
184 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
185 vp = vmlaq_f32(vc3, vp, vt);
186 vp = vmlaq_f32(vc2, vp, vt);
187 vp = vmlaq_f32(vc1, vp, vt);
188
189 // Reconstruct the final f value:
190 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
191 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
192 // = s + (t * s) * p
193 vt = vmulq_f32(vt, vs);
194 float32x4_t vf = vmlaq_f32(vs, vp, vt);
195
196 // For inputs below denormal cutoff, replace output with +0.0f.
197 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
198 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
199
200 // Store 4 outputs at a time.
201 vst1q_f32(output, vf); output += 4;
202
203 // Accumulate computed exponents.
204 vacc = vaddq_f32(vacc, vf);
205 }
206 #if XNN_ARCH_ARM64
207 float vacc_lo = vaddvq_f32(vacc);
208 #else
209 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
210 #endif
211 if (elements != 0) {
212 assert(elements >= 1 * sizeof(float));
213 assert(elements <= 3 * sizeof(float));
214 // Load 4 inputs at a time.
215 const float32x4_t vi = vld1q_f32(input); input += 4;
216
217 // Subtract maximum input x := i - i_max. This implies x <= 0.
218 const float32x4_t vx = vsubq_f32(vi, vi_max);
219
220 // Compute reduced argument n := round(x / log(2)).
221 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
222 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
223 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
224 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
225 // of the algorithm.
226 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
227
228 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
229 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
230 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
231
232 // Subtract the large number back to get final n := round(x / log(2)).
233 vn = vsubq_f32(vn, vmagic_bias);
234
235 // Compute reduced argument t := z - n * log(2).
236 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
237 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
238 vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
239
240 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
241 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
242 vp = vmlaq_f32(vc3, vp, vt);
243 vp = vmlaq_f32(vc2, vp, vt);
244 vp = vmlaq_f32(vc1, vp, vt);
245
246 // Reconstruct the final f value:
247 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
248 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
249 // = s + (t * s) * p
250 vt = vmulq_f32(vt, vs);
251 float32x4_t vf = vmlaq_f32(vs, vp, vt);
252
253 // For inputs below denormal cutoff, replace output with +0.0f.
254 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
255 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
256
257 float32x2_t vf_lo = vget_low_f32(vf);
258 if (elements & (2 * sizeof(float))) {
259 // Store 2 outputs at a time.
260 vst1_f32(output, vf_lo); output += 2;
261
262 // Accumulate 2 computed exponents.
263 #if XNN_ARCH_ARM64
264 vacc_lo += vaddv_f32(vf_lo);
265 #else
266 vacc_lo = vadd_f32(vacc_lo, vf_lo);
267 #endif
268
269 vf_lo = vget_high_f32(vf);
270 }
271 if (elements & (1 * sizeof(float))) {
272 // Store 1 output at a time.
273 vst1_lane_f32(output, vf_lo, 0);
274
275 // Accumulate 1 computed exponent.
276 #if XNN_ARCH_ARM64
277 vacc_lo += vget_lane_f32(vf_lo, 0);
278 #else
279 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
280 #endif
281 }
282 }
283 // Reduce 4 elements in the SIMD register
284 #if XNN_ARCH_ARM64
285 *sum = vacc_lo;
286 #else
287 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
288 #endif
289 }
290