• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x20_acc5(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x20_acc5(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33   const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34 
35   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40 
41   const float32x4_t vi_max = vdupq_n_f32(max);
42 
43   float32x4_t vacc0 = vmovq_n_f32(0.0f);
44   float32x4_t vacc1 = vmovq_n_f32(0.0f);
45   float32x4_t vacc2 = vmovq_n_f32(0.0f);
46   float32x4_t vacc3 = vmovq_n_f32(0.0f);
47   float32x4_t vacc4 = vmovq_n_f32(0.0f);
48   for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
49     // Load 20 (5x4) inputs at a time.
50     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
51     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
52     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
53     const float32x4_t viCDEF = vld1q_f32(input); input += 4;
54     const float32x4_t viGHIJ = vld1q_f32(input); input += 4;
55 
56     // Subtract maximum input x := i - i_max. This implies x <= 0.
57     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
58     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
59     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
60     const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
61     const float32x4_t vxGHIJ = vsubq_f32(viGHIJ, vi_max);
62 
63     // Compute reduced argument n := round(x / log(2)).
64     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
65     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
66     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
67     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
68     // of the algorithm.
69     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
70     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
71     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
72     float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e);
73     float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vxGHIJ, vlog2e);
74 
75     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
76     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
77     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
78     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
79     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
80     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
81     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23));
82 
83     // Subtract the large number back to get final n := round(x / log(2)).
84     vn0123 = vsubq_f32(vn0123, vmagic_bias);
85     vn4567 = vsubq_f32(vn4567, vmagic_bias);
86     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
87     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
88     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
89 
90     // Compute reduced argument t := z - n * log(2).
91     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
92     float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
93     float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
94     float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
95     float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
96     float32x4_t vtGHIJ = vmlaq_f32(vxGHIJ, vnGHIJ, vminus_ln2_hi);
97 
98     vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
99     vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
100     vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
101     vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
102     vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vminus_ln2_lo);
103 
104     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
105     float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
106     float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
107     float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
108     float32x4_t vpCDEF = vmlaq_f32(vc4, vc5, vtCDEF);
109     float32x4_t vpGHIJ = vmlaq_f32(vc4, vc5, vtGHIJ);
110 
111     vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
112     vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
113     vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
114     vpCDEF = vmlaq_f32(vc3, vpCDEF, vtCDEF);
115     vpGHIJ = vmlaq_f32(vc3, vpGHIJ, vtGHIJ);
116 
117     vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
118     vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
119     vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
120     vpCDEF = vmlaq_f32(vc2, vpCDEF, vtCDEF);
121     vpGHIJ = vmlaq_f32(vc2, vpGHIJ, vtGHIJ);
122 
123     vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
124     vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
125     vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
126     vpCDEF = vmlaq_f32(vc1, vpCDEF, vtCDEF);
127     vpGHIJ = vmlaq_f32(vc1, vpGHIJ, vtGHIJ);
128 
129     // Reconstruct the final f value:
130     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
131     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
132     //     = s + (t * s) * p
133     vt0123 = vmulq_f32(vt0123, vs0123);
134     vt4567 = vmulq_f32(vt4567, vs4567);
135     vt89AB = vmulq_f32(vt89AB, vs89AB);
136     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
137     vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ);
138 
139     float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
140     float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
141     float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
142     float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vpCDEF, vtCDEF);
143     float32x4_t vfGHIJ = vmlaq_f32(vsGHIJ, vpGHIJ, vtGHIJ);
144 
145     // For inputs below denormal cutoff, replace output with +0.0f.
146     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
147     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
148     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
149     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
150     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
151     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcltq_f32(vxGHIJ, vdenorm_cutoff)));
152 
153     // Store 20 (5x4) outputs at a time.
154     vst1q_f32(output, vf0123); output += 4;
155     vst1q_f32(output, vf4567); output += 4;
156     vst1q_f32(output, vf89AB); output += 4;
157     vst1q_f32(output, vfCDEF); output += 4;
158     vst1q_f32(output, vfGHIJ); output += 4;
159 
160     // Accumulate computed exponents.
161     vacc0 = vaddq_f32(vacc0, vf0123);
162     vacc4 = vaddq_f32(vacc4, vf4567);
163     vacc3 = vaddq_f32(vacc3, vf89AB);
164     vacc2 = vaddq_f32(vacc2, vfCDEF);
165     vacc1 = vaddq_f32(vacc1, vfGHIJ);
166   }
167   // Add up all accumulators to vacc0
168   vacc0 = vaddq_f32(vacc0, vacc1);
169   vacc2 = vaddq_f32(vacc2, vacc3);
170   vacc0 = vaddq_f32(vacc0, vacc2);
171   vacc0 = vaddq_f32(vacc0, vacc4);
172 
173   float32x4_t vacc = vacc0;
174   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
175     // Load 4 inputs at a time.
176     const float32x4_t vi = vld1q_f32(input); input += 4;
177 
178     // Subtract maximum input x := i - i_max. This implies x <= 0.
179     const float32x4_t vx = vsubq_f32(vi, vi_max);
180 
181     // Compute reduced argument n := round(x / log(2)).
182     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
183     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
184     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
185     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
186     // of the algorithm.
187     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
188 
189     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
190     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
191     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
192 
193     // Subtract the large number back to get final n := round(x / log(2)).
194     vn = vsubq_f32(vn, vmagic_bias);
195 
196     // Compute reduced argument t := z - n * log(2).
197     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
198     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
199     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
200 
201     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
202     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
203     vp = vmlaq_f32(vc3, vp, vt);
204     vp = vmlaq_f32(vc2, vp, vt);
205     vp = vmlaq_f32(vc1, vp, vt);
206 
207     // Reconstruct the final f value:
208     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
209     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
210     //     = s + (t * s) * p
211     vt = vmulq_f32(vt, vs);
212     float32x4_t vf = vmlaq_f32(vs, vp, vt);
213 
214     // For inputs below denormal cutoff, replace output with +0.0f.
215     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
216     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
217 
218     // Store 4 outputs at a time.
219     vst1q_f32(output, vf); output += 4;
220 
221     // Accumulate computed exponents.
222     vacc = vaddq_f32(vacc, vf);
223   }
224 #if XNN_ARCH_ARM64
225   float vacc_lo = vaddvq_f32(vacc);
226 #else
227   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
228 #endif
229   if (elements != 0) {
230     assert(elements >= 1 * sizeof(float));
231     assert(elements <= 3 * sizeof(float));
232     // Load 4 inputs at a time.
233     const float32x4_t vi = vld1q_f32(input); input += 4;
234 
235     // Subtract maximum input x := i - i_max. This implies x <= 0.
236     const float32x4_t vx = vsubq_f32(vi, vi_max);
237 
238     // Compute reduced argument n := round(x / log(2)).
239     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
240     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
241     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
242     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
243     // of the algorithm.
244     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
245 
246     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
247     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
248     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
249 
250     // Subtract the large number back to get final n := round(x / log(2)).
251     vn = vsubq_f32(vn, vmagic_bias);
252 
253     // Compute reduced argument t := z - n * log(2).
254     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
255     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
256     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
257 
258     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
259     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
260     vp = vmlaq_f32(vc3, vp, vt);
261     vp = vmlaq_f32(vc2, vp, vt);
262     vp = vmlaq_f32(vc1, vp, vt);
263 
264     // Reconstruct the final f value:
265     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
266     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
267     //     = s + (t * s) * p
268     vt = vmulq_f32(vt, vs);
269     float32x4_t vf = vmlaq_f32(vs, vp, vt);
270 
271     // For inputs below denormal cutoff, replace output with +0.0f.
272     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
273     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
274 
275     float32x2_t vf_lo = vget_low_f32(vf);
276     if (elements & (2 * sizeof(float))) {
277       // Store 2 outputs at a time.
278       vst1_f32(output, vf_lo); output += 2;
279 
280       // Accumulate 2 computed exponents.
281       #if XNN_ARCH_ARM64
282         vacc_lo += vaddv_f32(vf_lo);
283       #else
284         vacc_lo = vadd_f32(vacc_lo, vf_lo);
285       #endif
286 
287       vf_lo = vget_high_f32(vf);
288     }
289     if (elements & (1 * sizeof(float))) {
290       // Store 1 output at a time.
291       vst1_lane_f32(output, vf_lo, 0);
292 
293       // Accumulate 1 computed exponent.
294       #if XNN_ARCH_ARM64
295         vacc_lo += vget_lane_f32(vf_lo, 0);
296       #else
297         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
298       #endif
299     }
300   }
301   // Reduce 4 elements in the SIMD register
302 #if XNN_ARCH_ARM64
303   *sum = vacc_lo;
304 #else
305   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
306 #endif
307 }
308