1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x20_acc5(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x20_acc5(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max)
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33 const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34
35 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40
41 const float32x4_t vi_max = vdupq_n_f32(max);
42
43 float32x4_t vacc0 = vmovq_n_f32(0.0f);
44 float32x4_t vacc1 = vmovq_n_f32(0.0f);
45 float32x4_t vacc2 = vmovq_n_f32(0.0f);
46 float32x4_t vacc3 = vmovq_n_f32(0.0f);
47 float32x4_t vacc4 = vmovq_n_f32(0.0f);
48 for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
49 // Load 20 (5x4) inputs at a time.
50 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
51 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
52 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
53 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
54 const float32x4_t viGHIJ = vld1q_f32(input); input += 4;
55
56 // Subtract maximum input x := i - i_max. This implies x <= 0.
57 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
58 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
59 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
60 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
61 const float32x4_t vxGHIJ = vsubq_f32(viGHIJ, vi_max);
62
63 // Compute reduced argument n := round(x / log(2)).
64 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
65 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
66 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
67 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
68 // of the algorithm.
69 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
70 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
71 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
72 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e);
73 float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vxGHIJ, vlog2e);
74
75 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
76 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
77 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
78 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
79 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
80 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
81 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23));
82
83 // Subtract the large number back to get final n := round(x / log(2)).
84 vn0123 = vsubq_f32(vn0123, vmagic_bias);
85 vn4567 = vsubq_f32(vn4567, vmagic_bias);
86 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
87 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
88 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
89
90 // Compute reduced argument t := z - n * log(2).
91 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
92 float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
93 float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
94 float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
95 float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
96 float32x4_t vtGHIJ = vmlaq_f32(vxGHIJ, vnGHIJ, vminus_ln2_hi);
97
98 vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
99 vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
100 vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
101 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
102 vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vminus_ln2_lo);
103
104 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
105 float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
106 float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
107 float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
108 float32x4_t vpCDEF = vmlaq_f32(vc4, vc5, vtCDEF);
109 float32x4_t vpGHIJ = vmlaq_f32(vc4, vc5, vtGHIJ);
110
111 vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
112 vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
113 vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
114 vpCDEF = vmlaq_f32(vc3, vpCDEF, vtCDEF);
115 vpGHIJ = vmlaq_f32(vc3, vpGHIJ, vtGHIJ);
116
117 vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
118 vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
119 vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
120 vpCDEF = vmlaq_f32(vc2, vpCDEF, vtCDEF);
121 vpGHIJ = vmlaq_f32(vc2, vpGHIJ, vtGHIJ);
122
123 vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
124 vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
125 vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
126 vpCDEF = vmlaq_f32(vc1, vpCDEF, vtCDEF);
127 vpGHIJ = vmlaq_f32(vc1, vpGHIJ, vtGHIJ);
128
129 // Reconstruct the final f value:
130 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
131 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
132 // = s + (t * s) * p
133 vt0123 = vmulq_f32(vt0123, vs0123);
134 vt4567 = vmulq_f32(vt4567, vs4567);
135 vt89AB = vmulq_f32(vt89AB, vs89AB);
136 vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
137 vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ);
138
139 float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
140 float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
141 float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
142 float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vpCDEF, vtCDEF);
143 float32x4_t vfGHIJ = vmlaq_f32(vsGHIJ, vpGHIJ, vtGHIJ);
144
145 // For inputs below denormal cutoff, replace output with +0.0f.
146 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
147 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
148 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
149 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
150 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
151 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcltq_f32(vxGHIJ, vdenorm_cutoff)));
152
153 // Store 20 (5x4) outputs at a time.
154 vst1q_f32(output, vf0123); output += 4;
155 vst1q_f32(output, vf4567); output += 4;
156 vst1q_f32(output, vf89AB); output += 4;
157 vst1q_f32(output, vfCDEF); output += 4;
158 vst1q_f32(output, vfGHIJ); output += 4;
159
160 // Accumulate computed exponents.
161 vacc0 = vaddq_f32(vacc0, vf0123);
162 vacc4 = vaddq_f32(vacc4, vf4567);
163 vacc3 = vaddq_f32(vacc3, vf89AB);
164 vacc2 = vaddq_f32(vacc2, vfCDEF);
165 vacc1 = vaddq_f32(vacc1, vfGHIJ);
166 }
167 // Add up all accumulators to vacc0
168 vacc0 = vaddq_f32(vacc0, vacc1);
169 vacc2 = vaddq_f32(vacc2, vacc3);
170 vacc0 = vaddq_f32(vacc0, vacc2);
171 vacc0 = vaddq_f32(vacc0, vacc4);
172
173 float32x4_t vacc = vacc0;
174 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
175 // Load 4 inputs at a time.
176 const float32x4_t vi = vld1q_f32(input); input += 4;
177
178 // Subtract maximum input x := i - i_max. This implies x <= 0.
179 const float32x4_t vx = vsubq_f32(vi, vi_max);
180
181 // Compute reduced argument n := round(x / log(2)).
182 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
183 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
184 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
185 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
186 // of the algorithm.
187 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
188
189 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
190 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
191 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
192
193 // Subtract the large number back to get final n := round(x / log(2)).
194 vn = vsubq_f32(vn, vmagic_bias);
195
196 // Compute reduced argument t := z - n * log(2).
197 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
198 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
199 vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
200
201 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
202 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
203 vp = vmlaq_f32(vc3, vp, vt);
204 vp = vmlaq_f32(vc2, vp, vt);
205 vp = vmlaq_f32(vc1, vp, vt);
206
207 // Reconstruct the final f value:
208 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
209 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
210 // = s + (t * s) * p
211 vt = vmulq_f32(vt, vs);
212 float32x4_t vf = vmlaq_f32(vs, vp, vt);
213
214 // For inputs below denormal cutoff, replace output with +0.0f.
215 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
216 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
217
218 // Store 4 outputs at a time.
219 vst1q_f32(output, vf); output += 4;
220
221 // Accumulate computed exponents.
222 vacc = vaddq_f32(vacc, vf);
223 }
224 #if XNN_ARCH_ARM64
225 float vacc_lo = vaddvq_f32(vacc);
226 #else
227 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
228 #endif
229 if (elements != 0) {
230 assert(elements >= 1 * sizeof(float));
231 assert(elements <= 3 * sizeof(float));
232 // Load 4 inputs at a time.
233 const float32x4_t vi = vld1q_f32(input); input += 4;
234
235 // Subtract maximum input x := i - i_max. This implies x <= 0.
236 const float32x4_t vx = vsubq_f32(vi, vi_max);
237
238 // Compute reduced argument n := round(x / log(2)).
239 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
240 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
241 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
242 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
243 // of the algorithm.
244 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
245
246 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
247 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
248 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
249
250 // Subtract the large number back to get final n := round(x / log(2)).
251 vn = vsubq_f32(vn, vmagic_bias);
252
253 // Compute reduced argument t := z - n * log(2).
254 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
255 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
256 vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
257
258 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
259 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
260 vp = vmlaq_f32(vc3, vp, vt);
261 vp = vmlaq_f32(vc2, vp, vt);
262 vp = vmlaq_f32(vc1, vp, vt);
263
264 // Reconstruct the final f value:
265 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
266 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
267 // = s + (t * s) * p
268 vt = vmulq_f32(vt, vs);
269 float32x4_t vf = vmlaq_f32(vs, vp, vt);
270
271 // For inputs below denormal cutoff, replace output with +0.0f.
272 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
273 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
274
275 float32x2_t vf_lo = vget_low_f32(vf);
276 if (elements & (2 * sizeof(float))) {
277 // Store 2 outputs at a time.
278 vst1_f32(output, vf_lo); output += 2;
279
280 // Accumulate 2 computed exponents.
281 #if XNN_ARCH_ARM64
282 vacc_lo += vaddv_f32(vf_lo);
283 #else
284 vacc_lo = vadd_f32(vacc_lo, vf_lo);
285 #endif
286
287 vf_lo = vget_high_f32(vf);
288 }
289 if (elements & (1 * sizeof(float))) {
290 // Store 1 output at a time.
291 vst1_lane_f32(output, vf_lo, 0);
292
293 // Accumulate 1 computed exponent.
294 #if XNN_ARCH_ARM64
295 vacc_lo += vget_lane_f32(vf_lo, 0);
296 #else
297 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
298 #endif
299 }
300 }
301 // Reduce 4 elements in the SIMD register
302 #if XNN_ARCH_ARM64
303 *sum = vacc_lo;
304 #else
305 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
306 #endif
307 }
308