• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_raddstoreexpminusmax_ukernel__neonfma_lut64_p2_x20_acc5(size_t elements,const float * input,float * output,float * sum,float max)20 void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_lut64_p2_x20_acc5(
21     size_t elements,
22     const float* input,
23     float* output,
24     float* sum,
25     float max)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30   // The smallest x for which expf(x) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32   const float32x4_t vlog2e_x64  = vmovq_n_f32(0x1.715476p6f);
33   const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.62e43p-7f);
34   const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.05c61p-35f);
35 
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37 
38   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39 
40   const float32x4_t vi_max = vdupq_n_f32(max);
41 
42   float32x4_t vacc0 = vmovq_n_f32(0.0f);
43   float32x4_t vacc1 = vmovq_n_f32(0.0f);
44   float32x4_t vacc2 = vmovq_n_f32(0.0f);
45   float32x4_t vacc3 = vmovq_n_f32(0.0f);
46   float32x4_t vacc4 = vmovq_n_f32(0.0f);
47   for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
48     // Load 20 (5x4) inputs at a time.
49     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
50     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
51     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
52     const float32x4_t viCDEF = vld1q_f32(input); input += 4;
53     const float32x4_t viGHIJ = vld1q_f32(input); input += 4;
54 
55     // Subtract maximum input x := i - i_max. This implies x <= 0.
56     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
57     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
58     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
59     const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
60     const float32x4_t vxGHIJ = vsubq_f32(viGHIJ, vi_max);
61 
62     // Compute reduced argument n := round(x * 64 / log(2)).
63     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
64     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
65     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
66     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
67     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
68     // algorithm.
69     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e_x64);
70     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e_x64);
71     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e_x64);
72     float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vxCDEF, vlog2e_x64);
73     float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vxGHIJ, vlog2e_x64);
74 
75     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
76     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
77     // e := int(n / 64). We create s in two steps:
78     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
79     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
80     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
81     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
82     //    and thus the adjusted exponent is not lower than -126.
83     //
84     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
85     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
86     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
87     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
88     const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
89     const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
90 
91     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
92     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
93     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
94     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
95     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
96     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
97     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
98     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
99     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
100     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
101     const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
102     const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
103     const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
104     const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
105     const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
106     const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
107 
108     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
109     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
110     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
111     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
112     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
113     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
114     float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
115     float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
116     float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
117     float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
118 
119     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
120     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
121     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
122     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
123     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
124     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
125     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
126     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
127     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
128     vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
129     vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
130     const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
131     vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
132     vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
133     const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
134 
135     // Adjust exponent of the value l fetched from the table to get the final s value.
136     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
137     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
138     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
139     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
140     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
141 
142     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
143     vn0123 = vsubq_f32(vn0123, vmagic_bias);
144     vn4567 = vsubq_f32(vn4567, vmagic_bias);
145     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
146     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
147     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
148 
149     // Compute reduced argument t := x - n * log(2) / 64.
150     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
151     float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_o64_hi);
152     float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_o64_hi);
153     float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_o64_hi);
154     float32x4_t vtCDEF = vfmaq_f32(vxCDEF, vnCDEF, vminus_ln2_o64_hi);
155     float32x4_t vtGHIJ = vfmaq_f32(vxGHIJ, vnGHIJ, vminus_ln2_o64_hi);
156 
157     vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_o64_lo);
158     vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_o64_lo);
159     vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_o64_lo);
160     vtCDEF = vfmaq_f32(vtCDEF, vnCDEF, vminus_ln2_o64_lo);
161     vtGHIJ = vfmaq_f32(vtGHIJ, vnGHIJ, vminus_ln2_o64_lo);
162 
163     // Compute degree-2 polynomial approxiatmion for exp(t) on [-log(2)/128, log(2)/128].
164     float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
165     float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
166     float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
167     float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
168     float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
169 
170     vp0123 = vfmaq_f32(vt0123, vt0123, vp0123);
171     vp4567 = vfmaq_f32(vt4567, vt4567, vp4567);
172     vp89AB = vfmaq_f32(vt89AB, vt89AB, vp89AB);
173     vpCDEF = vfmaq_f32(vtCDEF, vtCDEF, vpCDEF);
174     vpGHIJ = vfmaq_f32(vtGHIJ, vtGHIJ, vpGHIJ);
175 
176     // Reconstruct the final f value:
177     //   f = s * (1 + t * (1 + t * c2))
178     //     = s * (1 + t + t * (t * c2))
179     //     = s + s * (t + t * (t * c2))
180     //     = s + s * p
181     float32x4_t vf0123 = vfmaq_f32(vs0123, vs0123, vp0123);
182     float32x4_t vf4567 = vfmaq_f32(vs4567, vs4567, vp4567);
183     float32x4_t vf89AB = vfmaq_f32(vs89AB, vs89AB, vp89AB);
184     float32x4_t vfCDEF = vfmaq_f32(vsCDEF, vsCDEF, vpCDEF);
185     float32x4_t vfGHIJ = vfmaq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
186 
187     // For inputs below denormal cutoff, replace output with +0.0f.
188     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
189     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
190     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
191     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
192     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
193     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcltq_f32(vxGHIJ, vdenorm_cutoff)));
194 
195     // Store 20 (5x4) outputs at a time.
196     vst1q_f32(output, vf0123); output += 4;
197     vst1q_f32(output, vf4567); output += 4;
198     vst1q_f32(output, vf89AB); output += 4;
199     vst1q_f32(output, vfCDEF); output += 4;
200     vst1q_f32(output, vfGHIJ); output += 4;
201 
202     // Accumulate computed exponents.
203     vacc0 = vaddq_f32(vacc0, vf0123);
204     vacc4 = vaddq_f32(vacc4, vf4567);
205     vacc3 = vaddq_f32(vacc3, vf89AB);
206     vacc2 = vaddq_f32(vacc2, vfCDEF);
207     vacc1 = vaddq_f32(vacc1, vfGHIJ);
208   }
209   // Add up all accumulators to vacc0
210   vacc0 = vaddq_f32(vacc0, vacc1);
211   vacc2 = vaddq_f32(vacc2, vacc3);
212   vacc0 = vaddq_f32(vacc0, vacc2);
213   vacc0 = vaddq_f32(vacc0, vacc4);
214 
215   float32x4_t vacc = vacc0;
216   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
217     // Load 4 inputs at a time.
218     const float32x4_t vi = vld1q_f32(input); input += 4;
219 
220     // Subtract maximum input x := i - i_max. This implies x <= 0.
221     const float32x4_t vx = vsubq_f32(vi, vi_max);
222 
223     // Compute reduced argument n := round(x * 64 / log(2)).
224     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
225     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
226     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
227     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
228     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
229     // algorithm.
230     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
231 
232     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
233     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
234     // e := int(n / 64). We create s in two steps:
235     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
236     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
237     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
238     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
239     //    and thus the adjusted exponent is not lower than -126.
240     //
241     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
242     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
243 
244     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
245     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
246     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
247     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
248     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
249     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
250     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
251     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
252     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
253     // Adjust exponent of the value l fetched from the table to get the final s value.
254     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
255 
256     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
257     vn = vsubq_f32(vn, vmagic_bias);
258 
259     // Compute reduced argument t := x - n * log(2) / 64.
260     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
261     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
262     vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
263 
264     // Compute degree-2 polynomial approxiatmion for exp(t) on [-log(2)/128, log(2)/128].
265     float32x4_t vp = vmulq_f32(vt, vc2);
266     vp = vfmaq_f32(vt, vt, vp);
267 
268     // Reconstruct the final f value:
269     //   f = s * (1 + t * (1 + t * c2))
270     //     = s * (1 + t + t * (t * c2))
271     //     = s + s * (t + t * (t * c2))
272     //     = s + s * p
273     float32x4_t vf = vfmaq_f32(vs, vs, vp);
274 
275     // For inputs below denormal cutoff, replace output with +0.0f.
276     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
277     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
278 
279     // Store 4 outputs at a time.
280     vst1q_f32(output, vf); output += 4;
281 
282     // Accumulate computed exponents.
283     vacc = vaddq_f32(vacc, vf);
284   }
285 #if XNN_ARCH_ARM64
286   float vacc_lo = vaddvq_f32(vacc);
287 #else
288   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
289 #endif
290   if (elements != 0) {
291     assert(elements >= 1 * sizeof(float));
292     assert(elements <= 3 * sizeof(float));
293     // Load 4 inputs at a time.
294     const float32x4_t vi = vld1q_f32(input); input += 4;
295 
296     // Subtract maximum input x := i - i_max. This implies x <= 0.
297     const float32x4_t vx = vsubq_f32(vi, vi_max);
298 
299     // Compute reduced argument n := round(x * 64 / log(2)).
300     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
301     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
302     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
303     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
304     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
305     // algorithm.
306     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
307 
308     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
309     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
310     // e := int(n / 64). We create s in two steps:
311     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
312     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
313     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
314     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
315     //    and thus the adjusted exponent is not lower than -126.
316     //
317     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
318     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
319 
320     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
321     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
322     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
323     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
324     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
325     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
326     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
327     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
328     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
329     // Adjust exponent of the value l fetched from the table to get the final s value.
330     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
331 
332     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
333     vn = vsubq_f32(vn, vmagic_bias);
334 
335     // Compute reduced argument t := x - n * log(2) / 64.
336     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
337     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
338     vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
339 
340     // Compute degree-2 polynomial approxiatmion for exp(t) on [-log(2)/128, log(2)/128].
341     float32x4_t vp = vmulq_f32(vt, vc2);
342     vp = vfmaq_f32(vt, vt, vp);
343 
344     // Reconstruct the final f value:
345     //   f = s * (1 + t * (1 + t * c2))
346     //     = s * (1 + t + t * (t * c2))
347     //     = s + s * (t + t * (t * c2))
348     //     = s + s * p
349     float32x4_t vf = vfmaq_f32(vs, vs, vp);
350 
351     // For inputs below denormal cutoff, replace output with +0.0f.
352     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
353     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
354 
355     float32x2_t vf_lo = vget_low_f32(vf);
356     if (elements & (2 * sizeof(float))) {
357       // Store 2 outputs at a time.
358       vst1_f32(output, vf_lo); output += 2;
359 
360       // Accumulate 2 computed exponents.
361       #if XNN_ARCH_ARM64
362         vacc_lo += vaddv_f32(vf_lo);
363       #else
364         vacc_lo = vadd_f32(vacc_lo, vf_lo);
365       #endif
366 
367       vf_lo = vget_high_f32(vf);
368     }
369     if (elements & (1 * sizeof(float))) {
370       // Store 1 output at a time.
371       vst1_lane_f32(output, vf_lo, 0);
372 
373       // Accumulate 1 computed exponent.
374       #if XNN_ARCH_ARM64
375         vacc_lo += vget_lane_f32(vf_lo, 0);
376       #else
377         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
378       #endif
379     }
380   }
381   // Reduce 4 elements in the SIMD register
382 #if XNN_ARCH_ARM64
383   *sum = vacc_lo;
384 #else
385   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
386 #endif
387 }
388