1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x16_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x16_acc2(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max)
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
32 const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
33
34 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
35 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
37 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
39
40 const float32x4_t vi_max = vdupq_n_f32(max);
41
42 float32x4_t vacc0 = vmovq_n_f32(0.0f);
43 float32x4_t vacc1 = vmovq_n_f32(0.0f);
44 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
45 // Load 16 (4x4) inputs at a time.
46 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
49 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
50
51 // Subtract maximum input x := i - i_max. This implies x <= 0.
52 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
53 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
54 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
55 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
56
57 // Compute reduced argument n := round(x / log(2)).
58 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
59 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
60 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
61 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
62 // of the algorithm.
63 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e);
64 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e);
65 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e);
66 float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vxCDEF, vlog2e);
67
68 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
69 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
70 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
71 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
72 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
73 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
74
75 // Subtract the large number back to get final n := round(x / log(2)).
76 vn0123 = vsubq_f32(vn0123, vmagic_bias);
77 vn4567 = vsubq_f32(vn4567, vmagic_bias);
78 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
79 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
80
81 // Compute reduced argument t := z - n * log(2).
82 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
83 float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_hi);
84 float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_hi);
85 float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
86 float32x4_t vtCDEF = vfmaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
87
88 vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_lo);
89 vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_lo);
90 vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
91 vtCDEF = vfmaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
92
93 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
94 float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
95 float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
96 float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
97 float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF);
98
99 vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
100 vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
101 vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
102 vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF);
103
104 vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
105 vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
106 vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
107 vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF);
108
109 vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
110 vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
111 vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
112 vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF);
113
114 // Reconstruct the final f value:
115 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
116 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
117 // = s + (t * s) * p
118 vt0123 = vmulq_f32(vt0123, vs0123);
119 vt4567 = vmulq_f32(vt4567, vs4567);
120 vt89AB = vmulq_f32(vt89AB, vs89AB);
121 vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
122
123 float32x4_t vf0123 = vfmaq_f32(vs0123, vp0123, vt0123);
124 float32x4_t vf4567 = vfmaq_f32(vs4567, vp4567, vt4567);
125 float32x4_t vf89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
126 float32x4_t vfCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF);
127
128 // For inputs below denormal cutoff, replace output with +0.0f.
129 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
130 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
131 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
132 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
133 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
134
135 // Store 16 (4x4) outputs at a time.
136 vst1q_f32(output, vf0123); output += 4;
137 vst1q_f32(output, vf4567); output += 4;
138 vst1q_f32(output, vf89AB); output += 4;
139 vst1q_f32(output, vfCDEF); output += 4;
140
141 // Accumulate computed exponents.
142 vacc0 = vaddq_f32(vacc0, vf0123);
143 vacc0 = vaddq_f32(vacc0, vf4567);
144 vacc0 = vaddq_f32(vacc0, vf89AB);
145 vacc0 = vaddq_f32(vacc0, vfCDEF);
146 }
147 // Add up all accumulators to vacc0
148 vacc0 = vaddq_f32(vacc0, vacc1);
149
150 float32x4_t vacc = vacc0;
151 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
152 // Load 4 inputs at a time.
153 const float32x4_t vi = vld1q_f32(input); input += 4;
154
155 // Subtract maximum input x := i - i_max. This implies x <= 0.
156 const float32x4_t vx = vsubq_f32(vi, vi_max);
157
158 // Compute reduced argument n := round(x / log(2)).
159 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
160 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
161 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
162 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
163 // of the algorithm.
164 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
165
166 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
167 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
168 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
169
170 // Subtract the large number back to get final n := round(x / log(2)).
171 vn = vsubq_f32(vn, vmagic_bias);
172
173 // Compute reduced argument t := z - n * log(2).
174 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
175 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
176 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
177
178 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
179 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
180 vp = vfmaq_f32(vc3, vp, vt);
181 vp = vfmaq_f32(vc2, vp, vt);
182 vp = vfmaq_f32(vc1, vp, vt);
183
184 // Reconstruct the final f value:
185 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
186 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
187 // = s + (t * s) * p
188 vt = vmulq_f32(vt, vs);
189 float32x4_t vf = vfmaq_f32(vs, vp, vt);
190
191 // For inputs below denormal cutoff, replace output with +0.0f.
192 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
193 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
194
195 // Store 4 outputs at a time.
196 vst1q_f32(output, vf); output += 4;
197
198 // Accumulate computed exponents.
199 vacc = vaddq_f32(vacc, vf);
200 }
201 #if XNN_ARCH_ARM64
202 float vacc_lo = vaddvq_f32(vacc);
203 #else
204 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
205 #endif
206 if (elements != 0) {
207 assert(elements >= 1 * sizeof(float));
208 assert(elements <= 3 * sizeof(float));
209 // Load 4 inputs at a time.
210 const float32x4_t vi = vld1q_f32(input); input += 4;
211
212 // Subtract maximum input x := i - i_max. This implies x <= 0.
213 const float32x4_t vx = vsubq_f32(vi, vi_max);
214
215 // Compute reduced argument n := round(x / log(2)).
216 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
217 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
218 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
219 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
220 // of the algorithm.
221 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
222
223 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
224 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
225 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
226
227 // Subtract the large number back to get final n := round(x / log(2)).
228 vn = vsubq_f32(vn, vmagic_bias);
229
230 // Compute reduced argument t := z - n * log(2).
231 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
232 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
233 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
234
235 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
236 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
237 vp = vfmaq_f32(vc3, vp, vt);
238 vp = vfmaq_f32(vc2, vp, vt);
239 vp = vfmaq_f32(vc1, vp, vt);
240
241 // Reconstruct the final f value:
242 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
243 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
244 // = s + (t * s) * p
245 vt = vmulq_f32(vt, vs);
246 float32x4_t vf = vfmaq_f32(vs, vp, vt);
247
248 // For inputs below denormal cutoff, replace output with +0.0f.
249 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
250 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
251
252 float32x2_t vf_lo = vget_low_f32(vf);
253 if (elements & (2 * sizeof(float))) {
254 // Store 2 outputs at a time.
255 vst1_f32(output, vf_lo); output += 2;
256
257 // Accumulate 2 computed exponents.
258 #if XNN_ARCH_ARM64
259 vacc_lo += vaddv_f32(vf_lo);
260 #else
261 vacc_lo = vadd_f32(vacc_lo, vf_lo);
262 #endif
263
264 vf_lo = vget_high_f32(vf);
265 }
266 if (elements & (1 * sizeof(float))) {
267 // Store 1 output at a time.
268 vst1_lane_f32(output, vf_lo, 0);
269
270 // Accumulate 1 computed exponent.
271 #if XNN_ARCH_ARM64
272 vacc_lo += vget_lane_f32(vf_lo, 0);
273 #else
274 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
275 #endif
276 }
277 }
278 // Reduce 4 elements in the SIMD register
279 #if XNN_ARCH_ARM64
280 *sum = vacc_lo;
281 #else
282 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
283 #endif
284 }
285