• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x20(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x20(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
32   const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
33 
34   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
35   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
37   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
39 
40   const float32x4_t vi_max = vdupq_n_f32(max);
41 
42   float32x4_t vacc0 = vmovq_n_f32(0.0f);
43   for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
44     // Load 20 (5x4) inputs at a time.
45     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
46     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
47     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
48     const float32x4_t viCDEF = vld1q_f32(input); input += 4;
49     const float32x4_t viGHIJ = vld1q_f32(input); input += 4;
50 
51     // Subtract maximum input x := i - i_max. This implies x <= 0.
52     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
53     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
54     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
55     const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
56     const float32x4_t vxGHIJ = vsubq_f32(viGHIJ, vi_max);
57 
58     // Compute reduced argument n := round(x / log(2)).
59     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
60     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
62     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
63     // of the algorithm.
64     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e);
65     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e);
66     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e);
67     float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vxCDEF, vlog2e);
68     float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vxGHIJ, vlog2e);
69 
70     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
71     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
72     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
73     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
74     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
75     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
76     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23));
77 
78     // Subtract the large number back to get final n := round(x / log(2)).
79     vn0123 = vsubq_f32(vn0123, vmagic_bias);
80     vn4567 = vsubq_f32(vn4567, vmagic_bias);
81     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
82     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
83     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
84 
85     // Compute reduced argument t := z - n * log(2).
86     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
87     float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_hi);
88     float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_hi);
89     float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
90     float32x4_t vtCDEF = vfmaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
91     float32x4_t vtGHIJ = vfmaq_f32(vxGHIJ, vnGHIJ, vminus_ln2_hi);
92 
93     vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_lo);
94     vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_lo);
95     vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
96     vtCDEF = vfmaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
97     vtGHIJ = vfmaq_f32(vtGHIJ, vnGHIJ, vminus_ln2_lo);
98 
99     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
100     float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
101     float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
102     float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
103     float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF);
104     float32x4_t vpGHIJ = vfmaq_f32(vc4, vc5, vtGHIJ);
105 
106     vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
107     vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
108     vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
109     vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF);
110     vpGHIJ = vfmaq_f32(vc3, vpGHIJ, vtGHIJ);
111 
112     vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
113     vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
114     vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
115     vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF);
116     vpGHIJ = vfmaq_f32(vc2, vpGHIJ, vtGHIJ);
117 
118     vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
119     vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
120     vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
121     vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF);
122     vpGHIJ = vfmaq_f32(vc1, vpGHIJ, vtGHIJ);
123 
124     // Reconstruct the final f value:
125     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
126     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
127     //     = s + (t * s) * p
128     vt0123 = vmulq_f32(vt0123, vs0123);
129     vt4567 = vmulq_f32(vt4567, vs4567);
130     vt89AB = vmulq_f32(vt89AB, vs89AB);
131     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
132     vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ);
133 
134     float32x4_t vf0123 = vfmaq_f32(vs0123, vp0123, vt0123);
135     float32x4_t vf4567 = vfmaq_f32(vs4567, vp4567, vt4567);
136     float32x4_t vf89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
137     float32x4_t vfCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF);
138     float32x4_t vfGHIJ = vfmaq_f32(vsGHIJ, vpGHIJ, vtGHIJ);
139 
140     // For inputs below denormal cutoff, replace output with +0.0f.
141     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
142     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
143     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
144     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
145     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
146     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcltq_f32(vxGHIJ, vdenorm_cutoff)));
147 
148     // Store 20 (5x4) outputs at a time.
149     vst1q_f32(output, vf0123); output += 4;
150     vst1q_f32(output, vf4567); output += 4;
151     vst1q_f32(output, vf89AB); output += 4;
152     vst1q_f32(output, vfCDEF); output += 4;
153     vst1q_f32(output, vfGHIJ); output += 4;
154 
155     // Accumulate computed exponents.
156     vacc0 = vaddq_f32(vacc0, vf0123);
157     vacc0 = vaddq_f32(vacc0, vf4567);
158     vacc0 = vaddq_f32(vacc0, vf89AB);
159     vacc0 = vaddq_f32(vacc0, vfCDEF);
160     vacc0 = vaddq_f32(vacc0, vfGHIJ);
161   }
162 
163   float32x4_t vacc = vacc0;
164   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
165     // Load 4 inputs at a time.
166     const float32x4_t vi = vld1q_f32(input); input += 4;
167 
168     // Subtract maximum input x := i - i_max. This implies x <= 0.
169     const float32x4_t vx = vsubq_f32(vi, vi_max);
170 
171     // Compute reduced argument n := round(x / log(2)).
172     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
173     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
174     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
175     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
176     // of the algorithm.
177     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
178 
179     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
180     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
181     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
182 
183     // Subtract the large number back to get final n := round(x / log(2)).
184     vn = vsubq_f32(vn, vmagic_bias);
185 
186     // Compute reduced argument t := z - n * log(2).
187     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
188     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
189     vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
190 
191     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
192     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
193     vp = vfmaq_f32(vc3, vp, vt);
194     vp = vfmaq_f32(vc2, vp, vt);
195     vp = vfmaq_f32(vc1, vp, vt);
196 
197     // Reconstruct the final f value:
198     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
199     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
200     //     = s + (t * s) * p
201     vt = vmulq_f32(vt, vs);
202     float32x4_t vf = vfmaq_f32(vs, vp, vt);
203 
204     // For inputs below denormal cutoff, replace output with +0.0f.
205     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
206     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
207 
208     // Store 4 outputs at a time.
209     vst1q_f32(output, vf); output += 4;
210 
211     // Accumulate computed exponents.
212     vacc = vaddq_f32(vacc, vf);
213   }
214 #if XNN_ARCH_ARM64
215   float vacc_lo = vaddvq_f32(vacc);
216 #else
217   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
218 #endif
219   if (elements != 0) {
220     assert(elements >= 1 * sizeof(float));
221     assert(elements <= 3 * sizeof(float));
222     // Load 4 inputs at a time.
223     const float32x4_t vi = vld1q_f32(input); input += 4;
224 
225     // Subtract maximum input x := i - i_max. This implies x <= 0.
226     const float32x4_t vx = vsubq_f32(vi, vi_max);
227 
228     // Compute reduced argument n := round(x / log(2)).
229     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
230     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
231     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
232     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
233     // of the algorithm.
234     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
235 
236     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
237     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
238     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
239 
240     // Subtract the large number back to get final n := round(x / log(2)).
241     vn = vsubq_f32(vn, vmagic_bias);
242 
243     // Compute reduced argument t := z - n * log(2).
244     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
245     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
246     vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
247 
248     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
249     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
250     vp = vfmaq_f32(vc3, vp, vt);
251     vp = vfmaq_f32(vc2, vp, vt);
252     vp = vfmaq_f32(vc1, vp, vt);
253 
254     // Reconstruct the final f value:
255     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
256     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
257     //     = s + (t * s) * p
258     vt = vmulq_f32(vt, vs);
259     float32x4_t vf = vfmaq_f32(vs, vp, vt);
260 
261     // For inputs below denormal cutoff, replace output with +0.0f.
262     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
263     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
264 
265     float32x2_t vf_lo = vget_low_f32(vf);
266     if (elements & (2 * sizeof(float))) {
267       // Store 2 outputs at a time.
268       vst1_f32(output, vf_lo); output += 2;
269 
270       // Accumulate 2 computed exponents.
271       #if XNN_ARCH_ARM64
272         vacc_lo += vaddv_f32(vf_lo);
273       #else
274         vacc_lo = vadd_f32(vacc_lo, vf_lo);
275       #endif
276 
277       vf_lo = vget_high_f32(vf);
278     }
279     if (elements & (1 * sizeof(float))) {
280       // Store 1 output at a time.
281       vst1_lane_f32(output, vf_lo, 0);
282 
283       // Accumulate 1 computed exponent.
284       #if XNN_ARCH_ARM64
285         vacc_lo += vget_lane_f32(vf_lo, 0);
286       #else
287         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
288       #endif
289     }
290   }
291   // Reduce 4 elements in the SIMD register
292 #if XNN_ARCH_ARM64
293   *sum = vacc_lo;
294 #else
295   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
296 #endif
297 }
298