1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x8_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x8_acc2(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max)
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
32 const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
33
34 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
35 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
37 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
39
40 const float32x4_t vi_max = vdupq_n_f32(max);
41
42 float32x4_t vacc0 = vmovq_n_f32(0.0f);
43 float32x4_t vacc1 = vmovq_n_f32(0.0f);
44 for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
45 // Load 8 (2x4) inputs at a time.
46 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48
49 // Subtract maximum input x := i - i_max. This implies x <= 0.
50 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
51 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
52
53 // Compute reduced argument n := round(x / log(2)).
54 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
55 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
56 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
57 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
58 // of the algorithm.
59 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e);
60 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e);
61
62 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
63 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
64 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
65 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
66
67 // Subtract the large number back to get final n := round(x / log(2)).
68 vn0123 = vsubq_f32(vn0123, vmagic_bias);
69 vn4567 = vsubq_f32(vn4567, vmagic_bias);
70
71 // Compute reduced argument t := z - n * log(2).
72 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
73 float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_hi);
74 float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_hi);
75
76 vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_lo);
77 vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_lo);
78
79 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
80 float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
81 float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
82
83 vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
84 vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
85
86 vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
87 vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
88
89 vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
90 vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
91
92 // Reconstruct the final f value:
93 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
94 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
95 // = s + (t * s) * p
96 vt0123 = vmulq_f32(vt0123, vs0123);
97 vt4567 = vmulq_f32(vt4567, vs4567);
98
99 float32x4_t vf0123 = vfmaq_f32(vs0123, vp0123, vt0123);
100 float32x4_t vf4567 = vfmaq_f32(vs4567, vp4567, vt4567);
101
102 // For inputs below denormal cutoff, replace output with +0.0f.
103 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
104 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
105 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
106
107 // Store 8 (2x4) outputs at a time.
108 vst1q_f32(output, vf0123); output += 4;
109 vst1q_f32(output, vf4567); output += 4;
110
111 // Accumulate computed exponents.
112 vacc0 = vaddq_f32(vacc0, vf0123);
113 vacc0 = vaddq_f32(vacc0, vf4567);
114 }
115 // Add up all accumulators to vacc0
116 vacc0 = vaddq_f32(vacc0, vacc1);
117
118 float32x4_t vacc = vacc0;
119 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
120 // Load 4 inputs at a time.
121 const float32x4_t vi = vld1q_f32(input); input += 4;
122
123 // Subtract maximum input x := i - i_max. This implies x <= 0.
124 const float32x4_t vx = vsubq_f32(vi, vi_max);
125
126 // Compute reduced argument n := round(x / log(2)).
127 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
128 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
129 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
130 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
131 // of the algorithm.
132 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
133
134 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
135 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
136 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
137
138 // Subtract the large number back to get final n := round(x / log(2)).
139 vn = vsubq_f32(vn, vmagic_bias);
140
141 // Compute reduced argument t := z - n * log(2).
142 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
143 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
144 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
145
146 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
147 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
148 vp = vfmaq_f32(vc3, vp, vt);
149 vp = vfmaq_f32(vc2, vp, vt);
150 vp = vfmaq_f32(vc1, vp, vt);
151
152 // Reconstruct the final f value:
153 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
154 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
155 // = s + (t * s) * p
156 vt = vmulq_f32(vt, vs);
157 float32x4_t vf = vfmaq_f32(vs, vp, vt);
158
159 // For inputs below denormal cutoff, replace output with +0.0f.
160 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
161 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
162
163 // Store 4 outputs at a time.
164 vst1q_f32(output, vf); output += 4;
165
166 // Accumulate computed exponents.
167 vacc = vaddq_f32(vacc, vf);
168 }
169 #if XNN_ARCH_ARM64
170 float vacc_lo = vaddvq_f32(vacc);
171 #else
172 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
173 #endif
174 if (elements != 0) {
175 assert(elements >= 1 * sizeof(float));
176 assert(elements <= 3 * sizeof(float));
177 // Load 4 inputs at a time.
178 const float32x4_t vi = vld1q_f32(input); input += 4;
179
180 // Subtract maximum input x := i - i_max. This implies x <= 0.
181 const float32x4_t vx = vsubq_f32(vi, vi_max);
182
183 // Compute reduced argument n := round(x / log(2)).
184 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
185 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
186 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
187 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
188 // of the algorithm.
189 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
190
191 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
192 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
193 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
194
195 // Subtract the large number back to get final n := round(x / log(2)).
196 vn = vsubq_f32(vn, vmagic_bias);
197
198 // Compute reduced argument t := z - n * log(2).
199 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
200 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
201 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
202
203 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
204 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
205 vp = vfmaq_f32(vc3, vp, vt);
206 vp = vfmaq_f32(vc2, vp, vt);
207 vp = vfmaq_f32(vc1, vp, vt);
208
209 // Reconstruct the final f value:
210 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
211 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
212 // = s + (t * s) * p
213 vt = vmulq_f32(vt, vs);
214 float32x4_t vf = vfmaq_f32(vs, vp, vt);
215
216 // For inputs below denormal cutoff, replace output with +0.0f.
217 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
218 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
219
220 float32x2_t vf_lo = vget_low_f32(vf);
221 if (elements & (2 * sizeof(float))) {
222 // Store 2 outputs at a time.
223 vst1_f32(output, vf_lo); output += 2;
224
225 // Accumulate 2 computed exponents.
226 #if XNN_ARCH_ARM64
227 vacc_lo += vaddv_f32(vf_lo);
228 #else
229 vacc_lo = vadd_f32(vacc_lo, vf_lo);
230 #endif
231
232 vf_lo = vget_high_f32(vf);
233 }
234 if (elements & (1 * sizeof(float))) {
235 // Store 1 output at a time.
236 vst1_lane_f32(output, vf_lo, 0);
237
238 // Accumulate 1 computed exponent.
239 #if XNN_ARCH_ARM64
240 vacc_lo += vget_lane_f32(vf_lo, 0);
241 #else
242 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
243 #endif
244 }
245 }
246 // Reduce 4 elements in the SIMD register
247 #if XNN_ARCH_ARM64
248 *sum = vacc_lo;
249 #else
250 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
251 #endif
252 }
253