• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x8_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x8_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
32   const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
33 
34   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
35   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
37   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
39 
40   const float32x4_t vi_max = vdupq_n_f32(max);
41 
42   float32x4_t vacc0 = vmovq_n_f32(0.0f);
43   float32x4_t vacc1 = vmovq_n_f32(0.0f);
44   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
45     // Load 8 (2x4) inputs at a time.
46     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48 
49     // Subtract maximum input x := i - i_max. This implies x <= 0.
50     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
51     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
52 
53     // Compute reduced argument n := round(x / log(2)).
54     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
55     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
56     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
57     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
58     // of the algorithm.
59     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e);
60     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e);
61 
62     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
63     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
64     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
65     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
66 
67     // Subtract the large number back to get final n := round(x / log(2)).
68     vn0123 = vsubq_f32(vn0123, vmagic_bias);
69     vn4567 = vsubq_f32(vn4567, vmagic_bias);
70 
71     // Compute reduced argument t := z - n * log(2).
72     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
73     float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_hi);
74     float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_hi);
75 
76     vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_lo);
77     vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_lo);
78 
79     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
80     float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
81     float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
82 
83     vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
84     vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
85 
86     vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
87     vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
88 
89     vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
90     vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
91 
92     // Reconstruct the final f value:
93     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
94     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
95     //     = s + (t * s) * p
96     vt0123 = vmulq_f32(vt0123, vs0123);
97     vt4567 = vmulq_f32(vt4567, vs4567);
98 
99     float32x4_t vf0123 = vfmaq_f32(vs0123, vp0123, vt0123);
100     float32x4_t vf4567 = vfmaq_f32(vs4567, vp4567, vt4567);
101 
102     // For inputs below denormal cutoff, replace output with +0.0f.
103     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
104     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
105     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
106 
107     // Store 8 (2x4) outputs at a time.
108     vst1q_f32(output, vf0123); output += 4;
109     vst1q_f32(output, vf4567); output += 4;
110 
111     // Accumulate computed exponents.
112     vacc0 = vaddq_f32(vacc0, vf0123);
113     vacc0 = vaddq_f32(vacc0, vf4567);
114   }
115   // Add up all accumulators to vacc0
116   vacc0 = vaddq_f32(vacc0, vacc1);
117 
118   float32x4_t vacc = vacc0;
119   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
120     // Load 4 inputs at a time.
121     const float32x4_t vi = vld1q_f32(input); input += 4;
122 
123     // Subtract maximum input x := i - i_max. This implies x <= 0.
124     const float32x4_t vx = vsubq_f32(vi, vi_max);
125 
126     // Compute reduced argument n := round(x / log(2)).
127     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
128     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
129     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
130     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
131     // of the algorithm.
132     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
133 
134     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
135     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
136     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
137 
138     // Subtract the large number back to get final n := round(x / log(2)).
139     vn = vsubq_f32(vn, vmagic_bias);
140 
141     // Compute reduced argument t := z - n * log(2).
142     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
143     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
144     vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
145 
146     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
147     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
148     vp = vfmaq_f32(vc3, vp, vt);
149     vp = vfmaq_f32(vc2, vp, vt);
150     vp = vfmaq_f32(vc1, vp, vt);
151 
152     // Reconstruct the final f value:
153     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
154     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
155     //     = s + (t * s) * p
156     vt = vmulq_f32(vt, vs);
157     float32x4_t vf = vfmaq_f32(vs, vp, vt);
158 
159     // For inputs below denormal cutoff, replace output with +0.0f.
160     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
161     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
162 
163     // Store 4 outputs at a time.
164     vst1q_f32(output, vf); output += 4;
165 
166     // Accumulate computed exponents.
167     vacc = vaddq_f32(vacc, vf);
168   }
169 #if XNN_ARCH_ARM64
170   float vacc_lo = vaddvq_f32(vacc);
171 #else
172   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
173 #endif
174   if (elements != 0) {
175     assert(elements >= 1 * sizeof(float));
176     assert(elements <= 3 * sizeof(float));
177     // Load 4 inputs at a time.
178     const float32x4_t vi = vld1q_f32(input); input += 4;
179 
180     // Subtract maximum input x := i - i_max. This implies x <= 0.
181     const float32x4_t vx = vsubq_f32(vi, vi_max);
182 
183     // Compute reduced argument n := round(x / log(2)).
184     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
185     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
186     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
187     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
188     // of the algorithm.
189     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
190 
191     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
192     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
193     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
194 
195     // Subtract the large number back to get final n := round(x / log(2)).
196     vn = vsubq_f32(vn, vmagic_bias);
197 
198     // Compute reduced argument t := z - n * log(2).
199     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
200     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
201     vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
202 
203     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
204     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
205     vp = vfmaq_f32(vc3, vp, vt);
206     vp = vfmaq_f32(vc2, vp, vt);
207     vp = vfmaq_f32(vc1, vp, vt);
208 
209     // Reconstruct the final f value:
210     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
211     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
212     //     = s + (t * s) * p
213     vt = vmulq_f32(vt, vs);
214     float32x4_t vf = vfmaq_f32(vs, vp, vt);
215 
216     // For inputs below denormal cutoff, replace output with +0.0f.
217     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
218     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
219 
220     float32x2_t vf_lo = vget_low_f32(vf);
221     if (elements & (2 * sizeof(float))) {
222       // Store 2 outputs at a time.
223       vst1_f32(output, vf_lo); output += 2;
224 
225       // Accumulate 2 computed exponents.
226       #if XNN_ARCH_ARM64
227         vacc_lo += vaddv_f32(vf_lo);
228       #else
229         vacc_lo = vadd_f32(vacc_lo, vf_lo);
230       #endif
231 
232       vf_lo = vget_high_f32(vf);
233     }
234     if (elements & (1 * sizeof(float))) {
235       // Store 1 output at a time.
236       vst1_lane_f32(output, vf_lo, 0);
237 
238       // Accumulate 1 computed exponent.
239       #if XNN_ARCH_ARM64
240         vacc_lo += vget_lane_f32(vf_lo, 0);
241       #else
242         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
243       #endif
244     }
245   }
246   // Reduce 4 elements in the SIMD register
247 #if XNN_ARCH_ARM64
248   *sum = vacc_lo;
249 #else
250   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
251 #endif
252 }
253