• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/psimd-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <psimd.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__psimd_p5_x8(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__psimd_p5_x8(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const psimd_f32 vmagic_bias = psimd_splat_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const psimd_f32 vdenorm_cutoff = psimd_splat_f32(-0x1.5D589Ep6f);
30   const psimd_f32 vlog2e = psimd_splat_f32(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const psimd_f32 vminus_ln2_hi = psimd_splat_f32(-0x1.62E400p-1f);
33   const psimd_f32 vminus_ln2_lo = psimd_splat_f32(-0x1.7F7D1Cp-20f);
34 
35   const psimd_f32 vc1 = psimd_splat_f32(0x1.FFFFF6p-1f);
36   const psimd_f32 vc2 = psimd_splat_f32(0x1.FFFDC6p-2f);
37   const psimd_f32 vc3 = psimd_splat_f32(0x1.555A80p-3f);
38   const psimd_f32 vc4 = psimd_splat_f32(0x1.573A1Ap-5f);
39   const psimd_f32 vc5 = psimd_splat_f32(0x1.0F9F9Cp-7f);
40 
41   const psimd_f32 vi_max = psimd_splat_f32(max);
42 
43   psimd_f32 vacc0 = psimd_zero_f32();
44   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
45     // Load 8 (2x4) inputs at a time.
46     const psimd_f32 vi0123 = psimd_load_f32(input);
47     const psimd_f32 vi4567 = psimd_load_f32(input + 4);
48     input += 8;
49 
50     // Subtract maximum input x := i - i_max. This implies x <= 0.
51     const psimd_f32 vx0123 = psimd_sub_f32(vi0123, vi_max);
52     const psimd_f32 vx4567 = psimd_sub_f32(vi4567, vi_max);
53 
54     // Compute reduced argument elements := round(x / log(2)).
55     psimd_f32 vn0123 = psimd_qfma_f32(vmagic_bias, vx0123, vlog2e);
56     psimd_f32 vn4567 = psimd_qfma_f32(vmagic_bias, vx4567, vlog2e);
57 
58     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
59     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
60     const psimd_f32 vs0123 = (psimd_f32) ((psimd_u32) vn0123 << 23);
61     const psimd_f32 vs4567 = (psimd_f32) ((psimd_u32) vn4567 << 23);
62 
63     // Subtract the large number back to get final elements := round(x / log(2)).
64     vn0123 = psimd_sub_f32(vn0123, vmagic_bias);
65     vn4567 = psimd_sub_f32(vn4567, vmagic_bias);
66 
67     // Compute reduced argument t := x - elements * log(2).
68     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
69     psimd_f32 vt0123 = psimd_qfma_f32(vx0123, vn0123, vminus_ln2_hi);
70     psimd_f32 vt4567 = psimd_qfma_f32(vx4567, vn4567, vminus_ln2_hi);
71 
72     vt0123 = psimd_qfma_f32(vt0123, vn0123, vminus_ln2_lo);
73     vt4567 = psimd_qfma_f32(vt4567, vn4567, vminus_ln2_lo);
74 
75     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
76     psimd_f32 vp0123 = psimd_qfma_f32(vc4, vc5, vt0123);
77     psimd_f32 vp4567 = psimd_qfma_f32(vc4, vc5, vt4567);
78 
79     vp0123 = psimd_qfma_f32(vc3, vp0123, vt0123);
80     vp4567 = psimd_qfma_f32(vc3, vp4567, vt4567);
81 
82     vp0123 = psimd_qfma_f32(vc2, vp0123, vt0123);
83     vp4567 = psimd_qfma_f32(vc2, vp4567, vt4567);
84 
85     vp0123 = psimd_qfma_f32(vc1, vp0123, vt0123);
86     vp4567 = psimd_qfma_f32(vc1, vp4567, vt4567);
87 
88     // Reconstruct the final f value:
89     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
90     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
91     //     = s + (t * s) * p
92     vt0123 = psimd_mul_f32(vt0123, vs0123);
93     vt4567 = psimd_mul_f32(vt4567, vs4567);
94 
95     psimd_f32 vf0123 = psimd_qfma_f32(vs0123, vt0123, vp0123);
96     psimd_f32 vf4567 = psimd_qfma_f32(vs4567, vt4567, vp4567);
97 
98     // For inputs below zero cutoff, replace output with +0.0f.
99     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
100     vf0123 = psimd_andnotmask_f32(vx0123 < vdenorm_cutoff, vf0123);
101     vf4567 = psimd_andnotmask_f32(vx4567 < vdenorm_cutoff, vf4567);
102 
103     // Store 8 (2x4) outputs at a time.
104     psimd_store_f32(output, vf0123);
105     psimd_store_f32(output + 4, vf4567);
106     output += 8;
107 
108     // Accumulate computed exponents.
109     vacc0 = psimd_add_f32(vacc0, vf0123);
110     vacc0 = psimd_add_f32(vacc0, vf4567);
111   }
112 
113   psimd_f32 vacc = vacc0;
114   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
115     // Load 4 inputs at a time.
116     const psimd_f32 vi = psimd_load_f32(input);
117     input += 4;
118 
119     // Subtract maximum input x := i - i_max. This implies x <= 0.
120     const psimd_f32 vx = psimd_sub_f32(vi, vi_max);
121 
122     // Compute reduced argument elements := round(x / log(2)).
123     psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vx, vlog2e);
124 
125     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
126     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
127     const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
128 
129     // Subtract the large number back to get final elements := round(x / log(2)).
130     vn = psimd_sub_f32(vn, vmagic_bias);
131 
132     // Compute reduced argument t := x - elements * log(2).
133     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
134     psimd_f32 vt = psimd_qfma_f32(vx, vn, vminus_ln2_hi);
135     vt = psimd_qfma_f32(vt, vn, vminus_ln2_lo);
136 
137     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
138     psimd_f32 vp = psimd_qfma_f32(vc4, vc5, vt);
139     vp = psimd_qfma_f32(vc3, vp, vt);
140     vp = psimd_qfma_f32(vc2, vp, vt);
141     vp = psimd_qfma_f32(vc1, vp, vt);
142 
143     // Reconstruct the final f value:
144     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
145     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
146     //     = s + (t * s) * p
147     vt = psimd_mul_f32(vt, vs);
148     psimd_f32 vf = psimd_qfma_f32(vs, vt, vp);
149 
150     // For inputs below zero cutoff, replace output with +0.0f.
151     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
152     vf = psimd_andnotmask_f32(vx < vdenorm_cutoff, vf);
153 
154     // Store 4 outputs at a time.
155     psimd_store_f32(output, vf);
156     output += 4;
157 
158     // Accumulate computed exponents.
159     vacc = psimd_add_f32(vacc, vf);
160   }
161   if (elements != 0) {
162     assert(elements >= 1 * sizeof(float));
163     assert(elements <= 3 * sizeof(float));
164     // Load 4 inputs at a time.
165     const psimd_f32 vi = psimd_load_f32(input);
166 
167     // Subtract maximum input x := i - i_max. This implies x <= 0.
168     const psimd_f32 vx = psimd_sub_f32(vi, vi_max);
169 
170     // Compute reduced argument elements := round(x / log(2)).
171     psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vx, vlog2e);
172 
173     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
174     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
175     const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
176 
177     // Subtract the large number back to get final elements := round(x / log(2)).
178     vn = psimd_sub_f32(vn, vmagic_bias);
179 
180     // Compute reduced argument t := x - elements * log(2).
181     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
182     psimd_f32 vt = psimd_qfma_f32(vx, vn, vminus_ln2_hi);
183     vt = psimd_qfma_f32(vt, vn, vminus_ln2_lo);
184 
185     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
186     psimd_f32 vp = psimd_qfma_f32(vc4, vc5, vt);
187     vp = psimd_qfma_f32(vc3, vp, vt);
188     vp = psimd_qfma_f32(vc2, vp, vt);
189     vp = psimd_qfma_f32(vc1, vp, vt);
190 
191     // Reconstruct the final f value:
192     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
193     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
194     //     = s + (t * s) * p
195     vt = psimd_mul_f32(vt, vs);
196     psimd_f32 vf = psimd_qfma_f32(vs, vt, vp);
197 
198     // For inputs below zero cutoff, replace output with +0.0f.
199     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
200     vf = psimd_andnotmask_f32(vx < vdenorm_cutoff, vf);
201 
202     if (elements & (2 * sizeof(float))) {
203       // Store 2 outputs at a time.
204       psimd_store2_f32(output, vf);
205       output += 2;
206 
207       // Accumulate 2 computed exponents.
208       vacc = psimd_add_f32(vacc, psimd_concat_lo_f32(vf, psimd_zero_f32()));
209 
210       vf = psimd_concat_hi_f32(vf, vf);
211     }
212     if (elements & (1 * sizeof(float))) {
213       // Store 1 output at a time.
214       psimd_store1_f32(output, vf);
215 
216       // Accumulate 1 computed exponent.
217       const psimd_f32 vzero = psimd_zero_f32();
218       vf = psimd_concat_lo_f32(vf, vzero);
219       vf = psimd_concat_even_f32(vf, vzero);
220       vacc = psimd_add_f32(vacc, vf);
221     }
222   }
223   // Reduce 4 elements in the SIMD register
224   *sum = psimd_reduce_sum_f32(vacc);
225 }
226