• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/scalar-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <xnnpack/common.h>
13 #include <xnnpack/raddstoreexpminusmax.h>
14 
15 #include <fp16/bitcasts.h>
16 
17 
18 // Note redefine as uint32[] to avoid redundant bitcasts.
19 extern XNN_INTERNAL const uint32_t xnn_table_exp2_k_over_64[64];
20 
xnn_f32_raddstoreexpminusmax_ukernel__scalar_lut64_p2_x4_acc4(size_t elements,const float * input,float * output,float * sum,float vi_max)21 void xnn_f32_raddstoreexpminusmax_ukernel__scalar_lut64_p2_x4_acc4(
22     size_t elements,
23     const float* input,
24     float* output,
25     float* sum,
26     float vi_max)
27 {
28   assert(elements % sizeof(float) == 0);
29 
30   const float vmagic_bias = 0x1.800000p23f;
31   // The smallest x for which expf(x) is normalized.
32   const float vdenorm_cutoff = -0x1.5D589Ep6f;
33   const float vlog2e_x64  = 0x1.715476p6f;
34   // Last 13 bits are zeroes
35   const float vminus_ln2_o64_hi = -0x1.630000p-7f;
36   const float vminus_ln2_o64_lo =  0x1.BD0106p-19f;
37 
38   const float vc2 = 0x1.FFFF0Ap-2f;
39 
40   const uint32_t vindex_mask = UINT32_C(0x3F);
41 
42   float vacc0 = 0.0f;
43   float vacc1 = 0.0f;
44   float vacc2 = 0.0f;
45   float vacc3 = 0.0f;
46   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
47     // Load 4 inputs at a time.
48     const float vi0 = input[0];
49     const float vi1 = input[1];
50     const float vi2 = input[2];
51     const float vi3 = input[3];
52     input += 4;
53 
54     // Subtract maximum input x := i - i_max. This implies x <= 0.
55     const float vx0 = vi0 - vi_max;
56     const float vx1 = vi1 - vi_max;
57     const float vx2 = vi2 - vi_max;
58     const float vx3 = vi3 - vi_max;
59 
60     // Compute reduced argument n := round(x * 64 / log(2)).
61     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
62     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
64     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
65     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
66     // algorithm.
67     float vn0 = vx0 * vlog2e_x64 + vmagic_bias;
68     float vn1 = vx1 * vlog2e_x64 + vmagic_bias;
69     float vn2 = vx2 * vlog2e_x64 + vmagic_bias;
70     float vn3 = vx3 * vlog2e_x64 + vmagic_bias;
71 
72     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
73     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
74     // e := int(n / 64). We create s in two steps:
75     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
76     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
77     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
78     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
79     //    and thus the adjusted exponent is not lower than -126.
80     //
81     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
82     const uint32_t ve0 = (fp32_to_bits(vn0) & UINT32_C(0xFFFFFFC0)) << 17;
83     const uint32_t ve1 = (fp32_to_bits(vn1) & UINT32_C(0xFFFFFFC0)) << 17;
84     const uint32_t ve2 = (fp32_to_bits(vn2) & UINT32_C(0xFFFFFFC0)) << 17;
85     const uint32_t ve3 = (fp32_to_bits(vn3) & UINT32_C(0xFFFFFFC0)) << 17;
86 
87     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
88     const uint32_t vidx0 = fp32_to_bits(vn0) & vindex_mask;
89     const uint32_t vidx1 = fp32_to_bits(vn1) & vindex_mask;
90     const uint32_t vidx2 = fp32_to_bits(vn2) & vindex_mask;
91     const uint32_t vidx3 = fp32_to_bits(vn3) & vindex_mask;
92     // Adjust exponent of the value l fetched from the table to get the final s value.
93     const float vs0 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx0] + ve0);
94     const float vs1 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx1] + ve1);
95     const float vs2 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx2] + ve2);
96     const float vs3 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx3] + ve3);
97 
98     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
99     vn0 -= vmagic_bias;
100     vn1 -= vmagic_bias;
101     vn2 -= vmagic_bias;
102     vn3 -= vmagic_bias;
103 
104     // Compute reduced argument t := x - n * log(2) / 64.
105     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
106     float vt0 = vn0 * vminus_ln2_o64_hi + vx0;
107     float vt1 = vn1 * vminus_ln2_o64_hi + vx1;
108     float vt2 = vn2 * vminus_ln2_o64_hi + vx2;
109     float vt3 = vn3 * vminus_ln2_o64_hi + vx3;
110 
111     vt0 = vn0 * vminus_ln2_o64_lo + vt0;
112     vt1 = vn1 * vminus_ln2_o64_lo + vt1;
113     vt2 = vn2 * vminus_ln2_o64_lo + vt2;
114     vt3 = vn3 * vminus_ln2_o64_lo + vt3;
115 
116     // Compute degree-2 polynomial approxiatmion for exp(t) on [-log(2)/128, log(2)/128].
117     float vp0 = vt0 * vc2;
118     float vp1 = vt1 * vc2;
119     float vp2 = vt2 * vc2;
120     float vp3 = vt3 * vc2;
121 
122     vp0 = vp0 * vt0 + vt0;
123     vp1 = vp1 * vt1 + vt1;
124     vp2 = vp2 * vt2 + vt2;
125     vp3 = vp3 * vt3 + vt3;
126 
127     // Reconstruct the final f value:
128     //   f = s * (1 + t * (1 + t * c2))
129     //     = s * (1 + t + t * (t * c2))
130     //     = s + s * (t + t * (t * c2))
131     //     = s + s * p
132     float vf0 = vp0 * vs0 + vs0;
133     float vf1 = vp1 * vs1 + vs1;
134     float vf2 = vp2 * vs2 + vs2;
135     float vf3 = vp3 * vs3 + vs3;
136 
137     // For inputs below denormal cutoff, replace output with +0.0f.
138     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
139     if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
140       vf0 = 0.0f;
141     }
142     if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
143       vf1 = 0.0f;
144     }
145     if XNN_UNPREDICTABLE(vx2 < vdenorm_cutoff) {
146       vf2 = 0.0f;
147     }
148     if XNN_UNPREDICTABLE(vx3 < vdenorm_cutoff) {
149       vf3 = 0.0f;
150     }
151 
152     // Store 4 outputs at a time.
153     output[0] = vf0;
154     output[1] = vf1;
155     output[2] = vf2;
156     output[3] = vf3;
157     output += 4;
158 
159     // Accumulate computed exponents.
160     vacc0 += vf0;
161     vacc1 += vf1;
162     vacc2 += vf2;
163     vacc3 += vf3;
164   }
165   // Add up all accumulators to vacc0
166   vacc0 += vacc1;
167   vacc2 += vacc3;
168   vacc0 += vacc2;
169 
170   float vacc = vacc0;
171   for (; elements >= sizeof(float); elements -= sizeof(float)) {
172     // Load 1 input at a time.
173     const float vi = *input++;
174 
175     // Subtract maximum input x := i - i_max. This implies x <= 0.
176     const float vx = vi - vi_max;
177 
178     // Compute reduced argument n := round(x * 64 / log(2)).
179     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
180     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
181     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
182     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
183     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
184     // algorithm.
185     float vn = vx * vlog2e_x64 + vmagic_bias;
186 
187     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
188     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
189     // e := int(n / 64). We create s in two steps:
190     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
191     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
192     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
193     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
194     //    and thus the adjusted exponent is not lower than -126.
195     //
196     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
197     const uint32_t ve = (fp32_to_bits(vn) & UINT32_C(0xFFFFFFC0)) << 17;
198 
199     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
200     const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
201     // Adjust exponent of the value l fetched from the table to get the final s value.
202     const float vs = fp32_from_bits(xnn_table_exp2_k_over_64[vidx] + ve);
203 
204     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
205     vn -= vmagic_bias;
206 
207     // Compute reduced argument t := x - n * log(2) / 64.
208     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
209     float vt = vn * vminus_ln2_o64_hi + vx;
210     vt = vn * vminus_ln2_o64_lo + vt;
211 
212     // Compute degree-2 polynomial approxiatmion for exp(t) on [-log(2)/128, log(2)/128].
213     float vp = vt * vc2;
214     vp = vp * vt + vt;
215 
216     // Reconstruct the final f value:
217     //   f = s * (1 + t * (1 + t * c2))
218     //     = s * (1 + t + t * (t * c2))
219     //     = s + s * (t + t * (t * c2))
220     //     = s + s * p
221     float vf = vp * vs + vs;
222 
223     // For inputs below denormal cutoff, replace output with +0.0f.
224     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
225     if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
226       vf = 0.0f;
227     }
228 
229     // Store 1 output at a time.
230     *output++ = vf;
231 
232     // Accumulate computed exponents.
233     vacc += vf;
234   }
235   *sum = vacc;
236 }
237