• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/scalar-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <xnnpack/common.h>
13 #include <xnnpack/raddstoreexpminusmax.h>
14 
15 #include <fp16/bitcasts.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__scalar_p5_x4_acc4(size_t elements,const float * input,float * output,float * sum,float vi_max)18 void xnn_f32_raddstoreexpminusmax_ukernel__scalar_p5_x4_acc4(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float vi_max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float vmagic_bias = 0x1.8000FEp23f;
28   // The smallest x for which expf(x) is normalized.
29   const float vdenorm_cutoff = -0x1.5D589Ep6f;
30   const float vlog2e = 0x1.715476p+0f;
31   // Last 7 bits are zeroes
32   const float vminus_ln2_hi = -0x1.62E400p-1f;
33   const float vminus_ln2_lo = -0x1.7F7D1Cp-20f;
34 
35   const float vc1 = 0x1.FFFFF6p-1f;
36   const float vc2 = 0x1.FFFDC6p-2f;
37   const float vc3 = 0x1.555A80p-3f;
38   const float vc4 = 0x1.573A1Ap-5f;
39   const float vc5 = 0x1.0F9F9Cp-7f;
40 
41   float vacc0 = 0.0f;
42   float vacc1 = 0.0f;
43   float vacc2 = 0.0f;
44   float vacc3 = 0.0f;
45   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
46     // Load 4 inputs at a time.
47     const float vi0 = input[0];
48     const float vi1 = input[1];
49     const float vi2 = input[2];
50     const float vi3 = input[3];
51     input += 4;
52 
53     // Subtract maximum input x := i - i_max. This implies x <= 0.
54     const float vx0 = vi0 - vi_max;
55     const float vx1 = vi1 - vi_max;
56     const float vx2 = vi2 - vi_max;
57     const float vx3 = vi3 - vi_max;
58 
59     // Compute reduced argument n := round(x / log(2)).
60     // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
61     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
62     // certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
63     // anyway. We fixup the result for such inputs at the very end of the algorithm.
64     float vn0 = vx0 * vlog2e + vmagic_bias;
65     float vn1 = vx1 * vlog2e + vmagic_bias;
66     float vn2 = vx2 * vlog2e + vmagic_bias;
67     float vn3 = vx3 * vlog2e + vmagic_bias;
68 
69     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
70     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
71     const float vs0 = fp32_from_bits(fp32_to_bits(vn0) << 23);
72     const float vs1 = fp32_from_bits(fp32_to_bits(vn1) << 23);
73     const float vs2 = fp32_from_bits(fp32_to_bits(vn2) << 23);
74     const float vs3 = fp32_from_bits(fp32_to_bits(vn3) << 23);
75 
76     // Subtract the large number back to get final n := round(x / log(2)).
77     vn0 -= vmagic_bias;
78     vn1 -= vmagic_bias;
79     vn2 -= vmagic_bias;
80     vn3 -= vmagic_bias;
81 
82     // Compute reduced argument t := x - n * log(2).
83     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
84     float vt0 = vn0 * vminus_ln2_hi + vx0;
85     float vt1 = vn1 * vminus_ln2_hi + vx1;
86     float vt2 = vn2 * vminus_ln2_hi + vx2;
87     float vt3 = vn3 * vminus_ln2_hi + vx3;
88 
89     vt0 = vn0 * vminus_ln2_lo + vt0;
90     vt1 = vn1 * vminus_ln2_lo + vt1;
91     vt2 = vn2 * vminus_ln2_lo + vt2;
92     vt3 = vn3 * vminus_ln2_lo + vt3;
93 
94     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
95     float vp0 = vc5 * vt0 + vc4;
96     float vp1 = vc5 * vt1 + vc4;
97     float vp2 = vc5 * vt2 + vc4;
98     float vp3 = vc5 * vt3 + vc4;
99 
100     vp0 = vp0 * vt0 + vc3;
101     vp1 = vp1 * vt1 + vc3;
102     vp2 = vp2 * vt2 + vc3;
103     vp3 = vp3 * vt3 + vc3;
104 
105     vp0 = vp0 * vt0 + vc2;
106     vp1 = vp1 * vt1 + vc2;
107     vp2 = vp2 * vt2 + vc2;
108     vp3 = vp3 * vt3 + vc2;
109 
110     vp0 = vp0 * vt0 + vc1;
111     vp1 = vp1 * vt1 + vc1;
112     vp2 = vp2 * vt2 + vc1;
113     vp3 = vp3 * vt3 + vc1;
114 
115     // Reconstruct the final f value:
116     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
117     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
118     //     = s + (t * s) * p
119     vt0 *= vs0;
120     vt1 *= vs1;
121     vt2 *= vs2;
122     vt3 *= vs3;
123 
124     float vf0 = vt0 * vp0 + vs0;
125     float vf1 = vt1 * vp1 + vs1;
126     float vf2 = vt2 * vp2 + vs2;
127     float vf3 = vt3 * vp3 + vs3;
128 
129     // For inputs below denormal cutoff, replace output with +0.0f.
130     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
131     if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
132       vf0 = 0.0f;
133     }
134     if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
135       vf1 = 0.0f;
136     }
137     if XNN_UNPREDICTABLE(vx2 < vdenorm_cutoff) {
138       vf2 = 0.0f;
139     }
140     if XNN_UNPREDICTABLE(vx3 < vdenorm_cutoff) {
141       vf3 = 0.0f;
142     }
143 
144     // Store 4 outputs at a time.
145     output[0] = vf0;
146     output[1] = vf1;
147     output[2] = vf2;
148     output[3] = vf3;
149     output += 4;
150 
151     // Accumulate computed exponents.
152     vacc0 += vf0;
153     vacc1 += vf1;
154     vacc2 += vf2;
155     vacc3 += vf3;
156   }
157   // Add up all accumulators to vacc0
158   vacc0 += vacc1;
159   vacc2 += vacc3;
160   vacc0 += vacc2;
161 
162   float vacc = vacc0;
163   for (; elements >= sizeof(float); elements -= sizeof(float)) {
164     // Load 1 input at a time.
165     const float vi = *input++;
166 
167     // Subtract maximum input x := i - i_max. This implies x <= 0.
168     const float vx = vi - vi_max;
169 
170     // Compute reduced argument n := round(x / log(2)).
171     // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
172     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
173     // certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
174     // anyway. We fixup the result for such inputs at the very end of the algorithm.
175     float vn = vx * vlog2e + vmagic_bias;
176 
177     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
178     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
179     const float vs = fp32_from_bits(fp32_to_bits(vn) << 23);
180 
181     // Subtract the large number back to get final n := round(x / log(2)).
182     vn -= vmagic_bias;
183 
184     // Compute reduced argument t := x - n * log(2).
185     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
186     float vt = vn * vminus_ln2_hi + vx;
187     vt = vn * vminus_ln2_lo + vt;
188 
189     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
190     float vp = vc5 * vt + vc4;
191     vp = vp * vt + vc3;
192     vp = vp * vt + vc2;
193     vp = vp * vt + vc1;
194 
195     // Reconstruct the final f value:
196     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
197     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
198     //     = s + (t * s) * p
199     vt *= vs;
200     float vf = vt * vp + vs;
201 
202     // For inputs below denormal cutoff, replace output with +0.0f.
203     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
204     if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
205       vf = 0.0f;
206     }
207 
208     // Store 1 output at a time.
209     *output++ = vf;
210 
211     // Accumulate computed exponents.
212     vacc += vf;
213   }
214   *sum = vacc;
215 }
216