• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/sse2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x16_acc4(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x16_acc4(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
30   const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33   const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34 
35   const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
36   const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
37   const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
38   const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
39   const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
40 
41   const __m128 vi_max = _mm_set1_ps(max);
42 
43   __m128 vacc0 = _mm_setzero_ps();
44   __m128 vacc1 = _mm_setzero_ps();
45   __m128 vacc2 = _mm_setzero_ps();
46   __m128 vacc3 = _mm_setzero_ps();
47   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
48     // Load 16 (4x4) inputs at a time.
49     const __m128 vi0123 = _mm_loadu_ps(input);
50     const __m128 vi4567 = _mm_loadu_ps(input + 4);
51     const __m128 vi89AB = _mm_loadu_ps(input + 8);
52     const __m128 viCDEF = _mm_loadu_ps(input + 12);
53     input += 16;
54 
55     // Subtract maximum input x := i - i_max. This implies x <= 0.
56     const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
57     const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
58     const __m128 vx89AB = _mm_sub_ps(vi89AB, vi_max);
59     const __m128 vxCDEF = _mm_sub_ps(viCDEF, vi_max);
60 
61     // Compute reduced argument elements := round(x / log(2)).
62     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
63     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
64     __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vx89AB, vlog2e), vmagic_bias);
65     __m128 vnCDEF = _mm_add_ps(_mm_mul_ps(vxCDEF, vlog2e), vmagic_bias);
66 
67     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
68     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
69     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
70     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
71     const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
72     const __m128 vsCDEF = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnCDEF), 23));
73 
74     // Subtract the large number back to get final elements := round(x / log(2)).
75     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
76     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
77     vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
78     vnCDEF = _mm_sub_ps(vnCDEF, vmagic_bias);
79 
80     // Compute reduced argument t := x - elements * log(2).
81     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
82     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
83     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
84     __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vx89AB);
85     __m128 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_hi), vxCDEF);
86 
87     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
88     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
89     vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
90     vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_lo), vtCDEF);
91 
92     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
93     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
94     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
95     __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
96     __m128 vpCDEF = _mm_add_ps(_mm_mul_ps(vc5, vtCDEF), vc4);
97 
98     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
99     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
100     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
101     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc3);
102 
103     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
104     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
105     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
106     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc2);
107 
108     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
109     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
110     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
111     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc1);
112 
113     // Reconstruct the final f value:
114     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
115     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
116     //     = s + (t * s) * p
117     vt0123 = _mm_mul_ps(vt0123, vs0123);
118     vt4567 = _mm_mul_ps(vt4567, vs4567);
119     vt89AB = _mm_mul_ps(vt89AB, vs89AB);
120     vtCDEF = _mm_mul_ps(vtCDEF, vsCDEF);
121 
122     __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
123     __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
124     __m128 vf89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
125     __m128 vfCDEF = _mm_add_ps(_mm_mul_ps(vtCDEF, vpCDEF), vsCDEF);
126 
127     // For inputs below zero cutoff, replace output with +0.0f.
128     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
129     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
130     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
131     vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vx89AB, vdenorm_cutoff), vf89AB);
132     vfCDEF = _mm_andnot_ps(_mm_cmplt_ps(vxCDEF, vdenorm_cutoff), vfCDEF);
133 
134     // Store 16 (4x4) outputs at a time.
135     _mm_storeu_ps(output, vf0123);
136     _mm_storeu_ps(output + 4, vf4567);
137     _mm_storeu_ps(output + 8, vf89AB);
138     _mm_storeu_ps(output + 12, vfCDEF);
139     output += 16;
140 
141     // Accumulate computed exponents.
142     vacc0 = _mm_add_ps(vacc0, vf0123);
143     vacc0 = _mm_add_ps(vacc0, vf4567);
144     vacc0 = _mm_add_ps(vacc0, vf89AB);
145     vacc0 = _mm_add_ps(vacc0, vfCDEF);
146   }
147   // Add up all accumulators to vacc0
148   vacc0 = _mm_add_ps(vacc0, vacc1);
149   vacc2 = _mm_add_ps(vacc2, vacc3);
150   vacc0 = _mm_add_ps(vacc0, vacc2);
151 
152   __m128 vacc = vacc0;
153   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
154     // Load 4 inputs at a time.
155     const __m128 vi = _mm_loadu_ps(input);
156     input += 4;
157 
158     // Subtract maximum input x := i - i_max. This implies x <= 0.
159     const __m128 vx = _mm_sub_ps(vi, vi_max);
160 
161     // Compute reduced argument elements := round(x / log(2)).
162     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
163 
164     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
165     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
166     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
167 
168     // Subtract the large number back to get final elements := round(x / log(2)).
169     vn = _mm_sub_ps(vn, vmagic_bias);
170 
171     // Compute reduced argument t := x - elements * log(2).
172     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
173     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
174     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
175 
176     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
177     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
178     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
179     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
180     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
181 
182     // Reconstruct the final f value:
183     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
184     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
185     //     = s + (t * s) * p
186     vt = _mm_mul_ps(vt, vs);
187     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
188 
189     // For inputs below zero cutoff, replace output with +0.0f.
190     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
191     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
192 
193     // Store 4 outputs at a time.
194     _mm_storeu_ps(output, vf);
195     output += 4;
196 
197     // Accumulate computed exponents.
198     vacc = _mm_add_ps(vacc, vf);
199   }
200   if (elements != 0) {
201     assert(elements >= 1 * sizeof(float));
202     assert(elements <= 3 * sizeof(float));
203     // Load 4 inputs at a time.
204     const __m128 vi = _mm_loadu_ps(input);
205 
206     // Subtract maximum input x := i - i_max. This implies x <= 0.
207     const __m128 vx = _mm_sub_ps(vi, vi_max);
208 
209     // Compute reduced argument elements := round(x / log(2)).
210     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
211 
212     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
213     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
214     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
215 
216     // Subtract the large number back to get final elements := round(x / log(2)).
217     vn = _mm_sub_ps(vn, vmagic_bias);
218 
219     // Compute reduced argument t := x - elements * log(2).
220     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
221     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
222     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
223 
224     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
225     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
226     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
227     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
228     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
229 
230     // Reconstruct the final f value:
231     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
232     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
233     //     = s + (t * s) * p
234     vt = _mm_mul_ps(vt, vs);
235     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
236 
237     // For inputs below zero cutoff, replace output with +0.0f.
238     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
239     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
240 
241     if (elements & (2 * sizeof(float))) {
242       // Store 2 outputs at a time.
243       _mm_storel_pi((__m64*) output, vf);
244       output += 2;
245 
246       // Accumulate 2 computed exponents.
247       vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
248 
249       vf = _mm_movehl_ps(vf, vf);
250     }
251     if (elements & (1 * sizeof(float))) {
252       // Store 1 output at a time.
253       _mm_store_ss(output, vf);
254 
255       // Accumulate 1 computed exponent.
256       vacc = _mm_add_ss(vacc, vf);
257     }
258   }
259   // Reduce 4 elements in the SIMD register
260   vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
261   vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
262   _mm_store_ss(sum, vacc);
263 }
264