1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/sse2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <emmintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x16_acc4(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x16_acc4(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max)
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
30 const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33 const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34
35 const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
36 const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
37 const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
38 const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
39 const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
40
41 const __m128 vi_max = _mm_set1_ps(max);
42
43 __m128 vacc0 = _mm_setzero_ps();
44 __m128 vacc1 = _mm_setzero_ps();
45 __m128 vacc2 = _mm_setzero_ps();
46 __m128 vacc3 = _mm_setzero_ps();
47 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
48 // Load 16 (4x4) inputs at a time.
49 const __m128 vi0123 = _mm_loadu_ps(input);
50 const __m128 vi4567 = _mm_loadu_ps(input + 4);
51 const __m128 vi89AB = _mm_loadu_ps(input + 8);
52 const __m128 viCDEF = _mm_loadu_ps(input + 12);
53 input += 16;
54
55 // Subtract maximum input x := i - i_max. This implies x <= 0.
56 const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
57 const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
58 const __m128 vx89AB = _mm_sub_ps(vi89AB, vi_max);
59 const __m128 vxCDEF = _mm_sub_ps(viCDEF, vi_max);
60
61 // Compute reduced argument elements := round(x / log(2)).
62 __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
63 __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
64 __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vx89AB, vlog2e), vmagic_bias);
65 __m128 vnCDEF = _mm_add_ps(_mm_mul_ps(vxCDEF, vlog2e), vmagic_bias);
66
67 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
68 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
69 const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
70 const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
71 const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
72 const __m128 vsCDEF = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnCDEF), 23));
73
74 // Subtract the large number back to get final elements := round(x / log(2)).
75 vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
76 vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
77 vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
78 vnCDEF = _mm_sub_ps(vnCDEF, vmagic_bias);
79
80 // Compute reduced argument t := x - elements * log(2).
81 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
82 __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
83 __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
84 __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vx89AB);
85 __m128 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_hi), vxCDEF);
86
87 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
88 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
89 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
90 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_lo), vtCDEF);
91
92 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
93 __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
94 __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
95 __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
96 __m128 vpCDEF = _mm_add_ps(_mm_mul_ps(vc5, vtCDEF), vc4);
97
98 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
99 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
100 vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
101 vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc3);
102
103 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
104 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
105 vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
106 vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc2);
107
108 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
109 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
110 vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
111 vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc1);
112
113 // Reconstruct the final f value:
114 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
115 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
116 // = s + (t * s) * p
117 vt0123 = _mm_mul_ps(vt0123, vs0123);
118 vt4567 = _mm_mul_ps(vt4567, vs4567);
119 vt89AB = _mm_mul_ps(vt89AB, vs89AB);
120 vtCDEF = _mm_mul_ps(vtCDEF, vsCDEF);
121
122 __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
123 __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
124 __m128 vf89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
125 __m128 vfCDEF = _mm_add_ps(_mm_mul_ps(vtCDEF, vpCDEF), vsCDEF);
126
127 // For inputs below zero cutoff, replace output with +0.0f.
128 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
129 vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
130 vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
131 vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vx89AB, vdenorm_cutoff), vf89AB);
132 vfCDEF = _mm_andnot_ps(_mm_cmplt_ps(vxCDEF, vdenorm_cutoff), vfCDEF);
133
134 // Store 16 (4x4) outputs at a time.
135 _mm_storeu_ps(output, vf0123);
136 _mm_storeu_ps(output + 4, vf4567);
137 _mm_storeu_ps(output + 8, vf89AB);
138 _mm_storeu_ps(output + 12, vfCDEF);
139 output += 16;
140
141 // Accumulate computed exponents.
142 vacc0 = _mm_add_ps(vacc0, vf0123);
143 vacc0 = _mm_add_ps(vacc0, vf4567);
144 vacc0 = _mm_add_ps(vacc0, vf89AB);
145 vacc0 = _mm_add_ps(vacc0, vfCDEF);
146 }
147 // Add up all accumulators to vacc0
148 vacc0 = _mm_add_ps(vacc0, vacc1);
149 vacc2 = _mm_add_ps(vacc2, vacc3);
150 vacc0 = _mm_add_ps(vacc0, vacc2);
151
152 __m128 vacc = vacc0;
153 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
154 // Load 4 inputs at a time.
155 const __m128 vi = _mm_loadu_ps(input);
156 input += 4;
157
158 // Subtract maximum input x := i - i_max. This implies x <= 0.
159 const __m128 vx = _mm_sub_ps(vi, vi_max);
160
161 // Compute reduced argument elements := round(x / log(2)).
162 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
163
164 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
165 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
166 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
167
168 // Subtract the large number back to get final elements := round(x / log(2)).
169 vn = _mm_sub_ps(vn, vmagic_bias);
170
171 // Compute reduced argument t := x - elements * log(2).
172 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
173 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
174 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
175
176 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
177 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
178 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
179 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
180 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
181
182 // Reconstruct the final f value:
183 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
184 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
185 // = s + (t * s) * p
186 vt = _mm_mul_ps(vt, vs);
187 __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
188
189 // For inputs below zero cutoff, replace output with +0.0f.
190 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
191 vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
192
193 // Store 4 outputs at a time.
194 _mm_storeu_ps(output, vf);
195 output += 4;
196
197 // Accumulate computed exponents.
198 vacc = _mm_add_ps(vacc, vf);
199 }
200 if (elements != 0) {
201 assert(elements >= 1 * sizeof(float));
202 assert(elements <= 3 * sizeof(float));
203 // Load 4 inputs at a time.
204 const __m128 vi = _mm_loadu_ps(input);
205
206 // Subtract maximum input x := i - i_max. This implies x <= 0.
207 const __m128 vx = _mm_sub_ps(vi, vi_max);
208
209 // Compute reduced argument elements := round(x / log(2)).
210 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
211
212 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
213 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
214 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
215
216 // Subtract the large number back to get final elements := round(x / log(2)).
217 vn = _mm_sub_ps(vn, vmagic_bias);
218
219 // Compute reduced argument t := x - elements * log(2).
220 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
221 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
222 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
223
224 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
225 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
226 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
227 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
228 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
229
230 // Reconstruct the final f value:
231 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
232 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
233 // = s + (t * s) * p
234 vt = _mm_mul_ps(vt, vs);
235 __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
236
237 // For inputs below zero cutoff, replace output with +0.0f.
238 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
239 vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
240
241 if (elements & (2 * sizeof(float))) {
242 // Store 2 outputs at a time.
243 _mm_storel_pi((__m64*) output, vf);
244 output += 2;
245
246 // Accumulate 2 computed exponents.
247 vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
248
249 vf = _mm_movehl_ps(vf, vf);
250 }
251 if (elements & (1 * sizeof(float))) {
252 // Store 1 output at a time.
253 _mm_store_ss(output, vf);
254
255 // Accumulate 1 computed exponent.
256 vacc = _mm_add_ss(vacc, vf);
257 }
258 }
259 // Reduce 4 elements in the SIMD register
260 vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
261 vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
262 _mm_store_ss(sum, vacc);
263 }
264