1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/avx2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <immintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29 // The smallest x for which sigmoidf(x) is normalized.
30 // This number is also the smallest x for which expf(x) is normalized.
31 const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33 const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34 const __m256 vone = _mm256_set1_ps(1.0f);
35 const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36
37 const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38 const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39 const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40 const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41 const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42
43 for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
44 const __m256 vx0 = _mm256_loadu_ps(x);
45 const __m256 vx1 = _mm256_loadu_ps(x + 8);
46 x += 16;
47
48 // General structure of the algorithm:
49 // / exp(x) / (1 + exp(x)) if x <= 0
50 // f[x] :=
51 // \ 1 - f[-x] if x >= 0
52 //
53 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
54 // then replace result with 1 - f[z] if x >= 0.
55 const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
56 const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
57
58 // Compute reduced argument n := round(z / log(2)).
59 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
60 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
61 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
62 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
63 // the algorithm.
64 __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
65 __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
66
67 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
68 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
69 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
70 const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
71
72 // Subtract the large number back to get final n := round(z / log(2)).
73 vn0 = _mm256_sub_ps(vn0, vmagic_bias);
74 vn1 = _mm256_sub_ps(vn1, vmagic_bias);
75
76 // Compute reduced argument t := z - n * log(2).
77 __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
78 __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
79
80 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
81 __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
82 __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
83
84 vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
85 vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
86
87 vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
88 vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
89
90 vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
91 vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
92
93 // Reconstruct the exp(z) value:
94 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
95 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
96 // = s + (t * s) * p
97 vt0 = _mm256_mul_ps(vt0, vs0);
98 vt1 = _mm256_mul_ps(vt1, vs1);
99
100 const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
101 const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
102
103 // Denominator of the sigmoid fraction: 1.0 + exp(z)
104 const __m256 vd0 = _mm256_add_ps(ve0, vone);
105 const __m256 vd1 = _mm256_add_ps(ve1, vone);
106
107 // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
108 __m256 vf0 = _mm256_div_ps(ve0, vd0);
109 __m256 vf1 = _mm256_div_ps(ve1, vd1);
110
111 // For inputs below denormal cutoff, replace output with +0.0f.
112 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
113 vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
114 vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
115
116 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
117 vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
118 vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
119
120 _mm256_storeu_ps(y, vf0);
121 _mm256_storeu_ps(y + 8, vf1);
122 y += 16;
123 }
124 for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
125 const __m256 vx = _mm256_loadu_ps(x);
126 x += 8;
127
128 // General structure of the algorithm:
129 // / exp(x) / (1 + exp(x)) if x <= 0
130 // f[x] :=
131 // \ 1 - f[-x] if x >= 0
132 //
133 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
134 // then replace result with 1 - f[z] if x >= 0.
135 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
136
137 // Compute reduced argument n := round(z / log(2)).
138 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
139 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
140 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
141 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
142 // the algorithm.
143 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
144
145 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
146 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
147 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
148
149 // Subtract the large number back to get final n := round(z / log(2)).
150 vn = _mm256_sub_ps(vn, vmagic_bias);
151
152 // Compute reduced argument t := z - n * log(2).
153 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
154
155 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
156 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
157 vp = _mm256_fmadd_ps(vp, vt, vc3);
158 vp = _mm256_fmadd_ps(vp, vt, vc2);
159 vp = _mm256_fmadd_ps(vp, vt, vc1);
160
161 // Reconstruct the exp(z) value:
162 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
163 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
164 // = s + (t * s) * p
165 vt = _mm256_mul_ps(vt, vs);
166 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
167
168 // Denominator of the sigmoid fraction: 1.0 + exp(z)
169 const __m256 vd = _mm256_add_ps(ve, vone);
170
171 // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
172 __m256 vf = _mm256_div_ps(ve, vd);
173
174 // For inputs below denormal cutoff, replace output with +0.0f.
175 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
176 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
177
178 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
179 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
180
181 _mm256_storeu_ps(y, vf);
182 y += 8;
183 }
184 if XNN_UNLIKELY(n != 0) {
185 assert(n >= 1 * sizeof(float));
186 assert(n <= 7 * sizeof(float));
187 __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
188
189 const __m256 vx = _mm256_maskload_ps(x, vmask);
190
191 // General structure of the algorithm:
192 // / exp(x) / (1 + exp(x)) if x <= 0
193 // f[x] :=
194 // \ 1 - f[-x] if x >= 0
195 //
196 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
197 // then replace result with 1 - f[z] if x >= 0.
198 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
199
200 // Compute reduced argument n := round(z / log(2)).
201 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
202 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
203 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
204 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
205 // the algorithm.
206 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
207
208 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
209 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
210 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
211
212 // Subtract the large number back to get final n := round(z / log(2)).
213 vn = _mm256_sub_ps(vn, vmagic_bias);
214
215 // Compute reduced argument t := z - n * log(2).
216 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
217
218 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
219 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
220 vp = _mm256_fmadd_ps(vp, vt, vc3);
221 vp = _mm256_fmadd_ps(vp, vt, vc2);
222 vp = _mm256_fmadd_ps(vp, vt, vc1);
223
224 // Reconstruct the exp(z) value:
225 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
226 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
227 // = s + (t * s) * p
228 vt = _mm256_mul_ps(vt, vs);
229 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
230
231 // Denominator of the sigmoid fraction: 1.0 + exp(z)
232 const __m256 vd = _mm256_add_ps(ve, vone);
233
234 // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
235 __m256 vf = _mm256_div_ps(ve, vd);
236
237 // For inputs below denormal cutoff, replace output with +0.0f.
238 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
239 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
240
241 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
242 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
243
244 // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
245 __m128 vf_lo = _mm256_castps256_ps128(vf);
246 if (n & (4 * sizeof(float))) {
247 _mm_storeu_ps(y, vf_lo);
248 vf_lo = _mm256_extractf128_ps(vf, 1);
249 y += 4;
250 }
251 if (n & (2 * sizeof(float))) {
252 _mm_storel_pi((__m64*) y, vf_lo);
253 vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
254 y += 2;
255 }
256 if (n & (1 * sizeof(float))) {
257 _mm_store_ss(y, vf_lo);
258 }
259 }
260 }
261