1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/avx2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <immintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29 // The smallest x for which sigmoidf(x) is normalized.
30 // This number is also the smallest x for which expf(x) is normalized.
31 const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33 const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34 const __m256 vone = _mm256_set1_ps(1.0f);
35 const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36
37 const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38 const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39 const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40 const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41 const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42
43 for (; n >= 48 * sizeof(float); n -= 48 * sizeof(float)) {
44 const __m256 vx0 = _mm256_loadu_ps(x);
45 const __m256 vx1 = _mm256_loadu_ps(x + 8);
46 const __m256 vx2 = _mm256_loadu_ps(x + 16);
47 const __m256 vx3 = _mm256_loadu_ps(x + 24);
48 const __m256 vx4 = _mm256_loadu_ps(x + 32);
49 const __m256 vx5 = _mm256_loadu_ps(x + 40);
50 x += 48;
51
52 // General structure of the algorithm:
53 // / exp(x) / (1 + exp(x)) if x <= 0
54 // f[x] :=
55 // \ 1 - f[-x] if x >= 0
56 //
57 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
58 // then replace result with 1 - f[z] if x >= 0.
59 const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
60 const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
61 const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
62 const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
63 const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
64 const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
65
66 // Compute reduced argument n := round(z / log(2)).
67 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
68 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
69 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
70 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
71 // the algorithm.
72 __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
73 __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
74 __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
75 __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
76 __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
77 __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
78
79 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
80 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
81 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
82 const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
83 const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
84 const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
85 const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
86 const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
87
88 // Subtract the large number back to get final n := round(z / log(2)).
89 vn0 = _mm256_sub_ps(vn0, vmagic_bias);
90 vn1 = _mm256_sub_ps(vn1, vmagic_bias);
91 vn2 = _mm256_sub_ps(vn2, vmagic_bias);
92 vn3 = _mm256_sub_ps(vn3, vmagic_bias);
93 vn4 = _mm256_sub_ps(vn4, vmagic_bias);
94 vn5 = _mm256_sub_ps(vn5, vmagic_bias);
95
96 // Compute reduced argument t := z - n * log(2).
97 __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
98 __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
99 __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
100 __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
101 __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
102 __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
103
104 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
105 __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
106 __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
107 __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
108 __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
109 __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
110 __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
111
112 vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
113 vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
114 vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
115 vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
116 vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
117 vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
118
119 vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
120 vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
121 vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
122 vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
123 vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
124 vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
125
126 vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
127 vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
128 vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
129 vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
130 vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
131 vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
132
133 // Reconstruct the exp(z) value:
134 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
135 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
136 // = s + (t * s) * p
137 vt0 = _mm256_mul_ps(vt0, vs0);
138 vt1 = _mm256_mul_ps(vt1, vs1);
139 vt2 = _mm256_mul_ps(vt2, vs2);
140 vt3 = _mm256_mul_ps(vt3, vs3);
141 vt4 = _mm256_mul_ps(vt4, vs4);
142 vt5 = _mm256_mul_ps(vt5, vs5);
143
144 const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
145 const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
146 const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
147 const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
148 const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
149 const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
150
151 // Denominator of the sigmoid fraction: 1.0 + exp(z)
152 const __m256 vd0 = _mm256_add_ps(ve0, vone);
153 const __m256 vd1 = _mm256_add_ps(ve1, vone);
154 const __m256 vd2 = _mm256_add_ps(ve2, vone);
155 const __m256 vd3 = _mm256_add_ps(ve3, vone);
156 const __m256 vd4 = _mm256_add_ps(ve4, vone);
157 const __m256 vd5 = _mm256_add_ps(ve5, vone);
158
159 // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
160 __m256 vf0 = _mm256_div_ps(ve0, vd0);
161 __m256 vf1 = _mm256_div_ps(ve1, vd1);
162 __m256 vf2 = _mm256_div_ps(ve2, vd2);
163 __m256 vf3 = _mm256_div_ps(ve3, vd3);
164 __m256 vf4 = _mm256_div_ps(ve4, vd4);
165 __m256 vf5 = _mm256_div_ps(ve5, vd5);
166
167 // For inputs below denormal cutoff, replace output with +0.0f.
168 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
169 vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
170 vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
171 vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
172 vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
173 vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
174 vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
175
176 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
177 vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
178 vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
179 vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
180 vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
181 vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
182 vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
183
184 _mm256_storeu_ps(y, vf0);
185 _mm256_storeu_ps(y + 8, vf1);
186 _mm256_storeu_ps(y + 16, vf2);
187 _mm256_storeu_ps(y + 24, vf3);
188 _mm256_storeu_ps(y + 32, vf4);
189 _mm256_storeu_ps(y + 40, vf5);
190 y += 48;
191 }
192 for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
193 const __m256 vx = _mm256_loadu_ps(x);
194 x += 8;
195
196 // General structure of the algorithm:
197 // / exp(x) / (1 + exp(x)) if x <= 0
198 // f[x] :=
199 // \ 1 - f[-x] if x >= 0
200 //
201 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
202 // then replace result with 1 - f[z] if x >= 0.
203 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
204
205 // Compute reduced argument n := round(z / log(2)).
206 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
207 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
208 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
209 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
210 // the algorithm.
211 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
212
213 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
214 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
215 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
216
217 // Subtract the large number back to get final n := round(z / log(2)).
218 vn = _mm256_sub_ps(vn, vmagic_bias);
219
220 // Compute reduced argument t := z - n * log(2).
221 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
222
223 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
224 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
225 vp = _mm256_fmadd_ps(vp, vt, vc3);
226 vp = _mm256_fmadd_ps(vp, vt, vc2);
227 vp = _mm256_fmadd_ps(vp, vt, vc1);
228
229 // Reconstruct the exp(z) value:
230 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
231 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
232 // = s + (t * s) * p
233 vt = _mm256_mul_ps(vt, vs);
234 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
235
236 // Denominator of the sigmoid fraction: 1.0 + exp(z)
237 const __m256 vd = _mm256_add_ps(ve, vone);
238
239 // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
240 __m256 vf = _mm256_div_ps(ve, vd);
241
242 // For inputs below denormal cutoff, replace output with +0.0f.
243 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
244 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
245
246 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
247 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
248
249 _mm256_storeu_ps(y, vf);
250 y += 8;
251 }
252 if XNN_UNLIKELY(n != 0) {
253 assert(n >= 1 * sizeof(float));
254 assert(n <= 7 * sizeof(float));
255 __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
256
257 const __m256 vx = _mm256_maskload_ps(x, vmask);
258
259 // General structure of the algorithm:
260 // / exp(x) / (1 + exp(x)) if x <= 0
261 // f[x] :=
262 // \ 1 - f[-x] if x >= 0
263 //
264 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
265 // then replace result with 1 - f[z] if x >= 0.
266 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
267
268 // Compute reduced argument n := round(z / log(2)).
269 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
270 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
271 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
272 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
273 // the algorithm.
274 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
275
276 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
277 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
278 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
279
280 // Subtract the large number back to get final n := round(z / log(2)).
281 vn = _mm256_sub_ps(vn, vmagic_bias);
282
283 // Compute reduced argument t := z - n * log(2).
284 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
285
286 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
287 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
288 vp = _mm256_fmadd_ps(vp, vt, vc3);
289 vp = _mm256_fmadd_ps(vp, vt, vc2);
290 vp = _mm256_fmadd_ps(vp, vt, vc1);
291
292 // Reconstruct the exp(z) value:
293 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
294 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
295 // = s + (t * s) * p
296 vt = _mm256_mul_ps(vt, vs);
297 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
298
299 // Denominator of the sigmoid fraction: 1.0 + exp(z)
300 const __m256 vd = _mm256_add_ps(ve, vone);
301
302 // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
303 __m256 vf = _mm256_div_ps(ve, vd);
304
305 // For inputs below denormal cutoff, replace output with +0.0f.
306 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
307 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
308
309 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
310 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
311
312 // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
313 __m128 vf_lo = _mm256_castps256_ps128(vf);
314 if (n & (4 * sizeof(float))) {
315 _mm_storeu_ps(y, vf_lo);
316 vf_lo = _mm256_extractf128_ps(vf, 1);
317 y += 4;
318 }
319 if (n & (2 * sizeof(float))) {
320 _mm_storel_pi((__m64*) y, vf_lo);
321 vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
322 y += 2;
323 }
324 if (n & (1 * sizeof(float))) {
325 _mm_store_ss(y, vf_lo);
326 }
327 }
328 }
329