• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29   // The smallest x for which sigmoidf(x) is normalized.
30   // This number is also the smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vone = _mm256_set1_ps(1.0f);
35   const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36 
37   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42 
43   for (; n >= 48 * sizeof(float); n -= 48 * sizeof(float)) {
44     const __m256 vx0 = _mm256_loadu_ps(x);
45     const __m256 vx1 = _mm256_loadu_ps(x + 8);
46     const __m256 vx2 = _mm256_loadu_ps(x + 16);
47     const __m256 vx3 = _mm256_loadu_ps(x + 24);
48     const __m256 vx4 = _mm256_loadu_ps(x + 32);
49     const __m256 vx5 = _mm256_loadu_ps(x + 40);
50     x += 48;
51 
52     // General structure of the algorithm:
53     //           / exp(x) / (1 + exp(x)) if x <= 0
54     //   f[x] :=
55     //           \ 1 - f[-x] if x >= 0
56     //
57     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
58     // then replace result with 1 - f[z] if x >= 0.
59     const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
60     const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
61     const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
62     const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
63     const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
64     const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
65 
66     // Compute reduced argument n := round(z / log(2)).
67     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
68     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
69     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
70     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
71     // the algorithm.
72     __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
73     __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
74     __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
75     __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
76     __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
77     __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
78 
79     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
80     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
81     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
82     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
83     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
84     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
85     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
86     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
87 
88     // Subtract the large number back to get final n := round(z / log(2)).
89     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
90     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
91     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
92     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
93     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
94     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
95 
96     // Compute reduced argument t := z - n * log(2).
97     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
98     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
99     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
100     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
101     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
102     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
103 
104     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
105     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
106     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
107     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
108     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
109     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
110     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
111 
112     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
113     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
114     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
115     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
116     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
117     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
118 
119     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
120     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
121     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
122     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
123     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
124     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
125 
126     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
127     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
128     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
129     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
130     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
131     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
132 
133     // Reconstruct the exp(z) value:
134     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
135     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
136     //     = s + (t * s) * p
137     vt0 = _mm256_mul_ps(vt0, vs0);
138     vt1 = _mm256_mul_ps(vt1, vs1);
139     vt2 = _mm256_mul_ps(vt2, vs2);
140     vt3 = _mm256_mul_ps(vt3, vs3);
141     vt4 = _mm256_mul_ps(vt4, vs4);
142     vt5 = _mm256_mul_ps(vt5, vs5);
143 
144     const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
145     const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
146     const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
147     const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
148     const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
149     const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
150 
151     // Denominator of the sigmoid fraction: 1.0 + exp(z)
152     const __m256 vd0 = _mm256_add_ps(ve0, vone);
153     const __m256 vd1 = _mm256_add_ps(ve1, vone);
154     const __m256 vd2 = _mm256_add_ps(ve2, vone);
155     const __m256 vd3 = _mm256_add_ps(ve3, vone);
156     const __m256 vd4 = _mm256_add_ps(ve4, vone);
157     const __m256 vd5 = _mm256_add_ps(ve5, vone);
158 
159     // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
160     __m256 vf0 = _mm256_div_ps(ve0, vd0);
161     __m256 vf1 = _mm256_div_ps(ve1, vd1);
162     __m256 vf2 = _mm256_div_ps(ve2, vd2);
163     __m256 vf3 = _mm256_div_ps(ve3, vd3);
164     __m256 vf4 = _mm256_div_ps(ve4, vd4);
165     __m256 vf5 = _mm256_div_ps(ve5, vd5);
166 
167     // For inputs below denormal cutoff, replace output with +0.0f.
168     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
169     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
170     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
171     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
172     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
173     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
174     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
175 
176     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
177     vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
178     vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
179     vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
180     vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
181     vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
182     vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
183 
184     _mm256_storeu_ps(y, vf0);
185     _mm256_storeu_ps(y + 8, vf1);
186     _mm256_storeu_ps(y + 16, vf2);
187     _mm256_storeu_ps(y + 24, vf3);
188     _mm256_storeu_ps(y + 32, vf4);
189     _mm256_storeu_ps(y + 40, vf5);
190     y += 48;
191   }
192   for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
193     const __m256 vx = _mm256_loadu_ps(x);
194     x += 8;
195 
196     // General structure of the algorithm:
197     //           / exp(x) / (1 + exp(x)) if x <= 0
198     //   f[x] :=
199     //           \ 1 - f[-x] if x >= 0
200     //
201     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
202     // then replace result with 1 - f[z] if x >= 0.
203     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
204 
205     // Compute reduced argument n := round(z / log(2)).
206     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
207     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
208     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
209     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
210     // the algorithm.
211     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
212 
213     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
214     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
215     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
216 
217     // Subtract the large number back to get final n := round(z / log(2)).
218     vn = _mm256_sub_ps(vn, vmagic_bias);
219 
220     // Compute reduced argument t := z - n * log(2).
221     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
222 
223     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
224     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
225     vp = _mm256_fmadd_ps(vp, vt, vc3);
226     vp = _mm256_fmadd_ps(vp, vt, vc2);
227     vp = _mm256_fmadd_ps(vp, vt, vc1);
228 
229     // Reconstruct the exp(z) value:
230     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
231     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
232     //     = s + (t * s) * p
233     vt = _mm256_mul_ps(vt, vs);
234     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
235 
236     // Denominator of the sigmoid fraction: 1.0 + exp(z)
237     const __m256 vd = _mm256_add_ps(ve, vone);
238 
239     // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
240     __m256 vf = _mm256_div_ps(ve, vd);
241 
242     // For inputs below denormal cutoff, replace output with +0.0f.
243     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
244     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
245 
246     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
247     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
248 
249     _mm256_storeu_ps(y, vf);
250     y += 8;
251   }
252   if XNN_UNLIKELY(n != 0) {
253     assert(n >= 1 * sizeof(float));
254     assert(n <= 7 * sizeof(float));
255     __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
256 
257     const __m256 vx = _mm256_maskload_ps(x, vmask);
258 
259     // General structure of the algorithm:
260     //           / exp(x) / (1 + exp(x)) if x <= 0
261     //   f[x] :=
262     //           \ 1 - f[-x] if x >= 0
263     //
264     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
265     // then replace result with 1 - f[z] if x >= 0.
266     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
267 
268     // Compute reduced argument n := round(z / log(2)).
269     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
270     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
271     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
272     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
273     // the algorithm.
274     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
275 
276     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
277     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
278     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
279 
280     // Subtract the large number back to get final n := round(z / log(2)).
281     vn = _mm256_sub_ps(vn, vmagic_bias);
282 
283     // Compute reduced argument t := z - n * log(2).
284     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
285 
286     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
287     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
288     vp = _mm256_fmadd_ps(vp, vt, vc3);
289     vp = _mm256_fmadd_ps(vp, vt, vc2);
290     vp = _mm256_fmadd_ps(vp, vt, vc1);
291 
292     // Reconstruct the exp(z) value:
293     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
294     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
295     //     = s + (t * s) * p
296     vt = _mm256_mul_ps(vt, vs);
297     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
298 
299     // Denominator of the sigmoid fraction: 1.0 + exp(z)
300     const __m256 vd = _mm256_add_ps(ve, vone);
301 
302     // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
303     __m256 vf = _mm256_div_ps(ve, vd);
304 
305     // For inputs below denormal cutoff, replace output with +0.0f.
306     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
307     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
308 
309     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
310     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
311 
312     // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
313     __m128 vf_lo = _mm256_castps256_ps128(vf);
314     if (n & (4 * sizeof(float))) {
315       _mm_storeu_ps(y, vf_lo);
316       vf_lo = _mm256_extractf128_ps(vf, 1);
317       y += 4;
318     }
319     if (n & (2 * sizeof(float))) {
320       _mm_storel_pi((__m64*) y, vf_lo);
321       vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
322       y += 2;
323     }
324     if (n & (1 * sizeof(float))) {
325       _mm_store_ss(y, vf_lo);
326     }
327   }
328 }
329