1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/avx2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <immintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29 // The smallest x for which sigmoidf(x) is normalized.
30 // This number is also the smallest x for which expf(x) is normalized.
31 const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33 const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34 const __m256 vone = _mm256_set1_ps(1.0f);
35 const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36
37 const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38 const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39 const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40 const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41 const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42
43 for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
44 const __m256 vx0 = _mm256_loadu_ps(x);
45 const __m256 vx1 = _mm256_loadu_ps(x + 8);
46 const __m256 vx2 = _mm256_loadu_ps(x + 16);
47 x += 24;
48
49 // General structure of the algorithm:
50 // / exp(x) / (1 + exp(x)) if x <= 0
51 // f[x] :=
52 // \ 1 - f[-x] if x >= 0
53 //
54 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
55 // then replace result with 1 - f[z] if x >= 0.
56 const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
57 const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
58 const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
59
60 // Compute reduced argument n := round(z / log(2)).
61 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
62 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
63 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
64 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
65 // the algorithm.
66 __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
67 __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
68 __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
69
70 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
71 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
72 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
73 const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
74 const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
75
76 // Subtract the large number back to get final n := round(z / log(2)).
77 vn0 = _mm256_sub_ps(vn0, vmagic_bias);
78 vn1 = _mm256_sub_ps(vn1, vmagic_bias);
79 vn2 = _mm256_sub_ps(vn2, vmagic_bias);
80
81 // Compute reduced argument t := z - n * log(2).
82 __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
83 __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
84 __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
85
86 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
87 __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
88 __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
89 __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
90
91 vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
92 vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
93 vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
94
95 vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
96 vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
97 vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
98
99 vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
100 vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
101 vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
102
103 // Reconstruct the exp(z) value:
104 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
105 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
106 // = s + (t * s) * p
107 vt0 = _mm256_mul_ps(vt0, vs0);
108 vt1 = _mm256_mul_ps(vt1, vs1);
109 vt2 = _mm256_mul_ps(vt2, vs2);
110
111 const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
112 const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
113 const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
114
115 // Denominator of the sigmoid fraction: 1.0 + exp(z)
116 const __m256 vd0 = _mm256_add_ps(ve0, vone);
117 const __m256 vd1 = _mm256_add_ps(ve1, vone);
118 const __m256 vd2 = _mm256_add_ps(ve2, vone);
119
120 // Use Newton-Raphson method to compute reciprocal of denominator.
121 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
122 // Thus the reciprocal of the denominator never overflows.
123 __m256 vr0 = _mm256_rcp_ps(vd0);
124 __m256 vr1 = _mm256_rcp_ps(vd1);
125 __m256 vr2 = _mm256_rcp_ps(vd2);
126
127 vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
128 vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
129 vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
130
131
132 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
133 __m256 vf0 = _mm256_mul_ps(ve0, vr0);
134 __m256 vf1 = _mm256_mul_ps(ve1, vr1);
135 __m256 vf2 = _mm256_mul_ps(ve2, vr2);
136
137 // For inputs below denormal cutoff, replace output with +0.0f.
138 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
139 vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
140 vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
141 vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
142
143 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
144 vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
145 vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
146 vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
147
148 _mm256_storeu_ps(y, vf0);
149 _mm256_storeu_ps(y + 8, vf1);
150 _mm256_storeu_ps(y + 16, vf2);
151 y += 24;
152 }
153 for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
154 const __m256 vx = _mm256_loadu_ps(x);
155 x += 8;
156
157 // General structure of the algorithm:
158 // / exp(x) / (1 + exp(x)) if x <= 0
159 // f[x] :=
160 // \ 1 - f[-x] if x >= 0
161 //
162 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
163 // then replace result with 1 - f[z] if x >= 0.
164 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
165
166 // Compute reduced argument n := round(z / log(2)).
167 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
168 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
169 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
170 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
171 // the algorithm.
172 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
173
174 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
175 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
176 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
177
178 // Subtract the large number back to get final n := round(z / log(2)).
179 vn = _mm256_sub_ps(vn, vmagic_bias);
180
181 // Compute reduced argument t := z - n * log(2).
182 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
183
184 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
185 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
186 vp = _mm256_fmadd_ps(vp, vt, vc3);
187 vp = _mm256_fmadd_ps(vp, vt, vc2);
188 vp = _mm256_fmadd_ps(vp, vt, vc1);
189
190 // Reconstruct the exp(z) value:
191 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
192 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
193 // = s + (t * s) * p
194 vt = _mm256_mul_ps(vt, vs);
195 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
196
197 // Denominator of the sigmoid fraction: 1.0 + exp(z)
198 const __m256 vd = _mm256_add_ps(ve, vone);
199
200 // Use Newton-Raphson method to compute reciprocal of denominator.
201 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
202 // Thus the reciprocal of the denominator never overflows.
203 __m256 vr = _mm256_rcp_ps(vd);
204 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
205
206 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
207 __m256 vf = _mm256_mul_ps(ve, vr);
208
209 // For inputs below denormal cutoff, replace output with +0.0f.
210 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
211 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
212
213 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
214 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
215
216 _mm256_storeu_ps(y, vf);
217 y += 8;
218 }
219 if XNN_UNLIKELY(n != 0) {
220 assert(n >= 1 * sizeof(float));
221 assert(n <= 7 * sizeof(float));
222 __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
223
224 const __m256 vx = _mm256_maskload_ps(x, vmask);
225
226 // General structure of the algorithm:
227 // / exp(x) / (1 + exp(x)) if x <= 0
228 // f[x] :=
229 // \ 1 - f[-x] if x >= 0
230 //
231 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
232 // then replace result with 1 - f[z] if x >= 0.
233 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
234
235 // Compute reduced argument n := round(z / log(2)).
236 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
237 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
238 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
239 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
240 // the algorithm.
241 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
242
243 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
244 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
245 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
246
247 // Subtract the large number back to get final n := round(z / log(2)).
248 vn = _mm256_sub_ps(vn, vmagic_bias);
249
250 // Compute reduced argument t := z - n * log(2).
251 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
252
253 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
254 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
255 vp = _mm256_fmadd_ps(vp, vt, vc3);
256 vp = _mm256_fmadd_ps(vp, vt, vc2);
257 vp = _mm256_fmadd_ps(vp, vt, vc1);
258
259 // Reconstruct the exp(z) value:
260 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
261 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
262 // = s + (t * s) * p
263 vt = _mm256_mul_ps(vt, vs);
264 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
265
266 // Denominator of the sigmoid fraction: 1.0 + exp(z)
267 const __m256 vd = _mm256_add_ps(ve, vone);
268
269 // Use Newton-Raphson method to compute reciprocal of denominator.
270 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
271 // Thus the reciprocal of the denominator never overflows.
272 __m256 vr = _mm256_rcp_ps(vd);
273 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
274
275 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
276 __m256 vf = _mm256_mul_ps(ve, vr);
277
278 // For inputs below denormal cutoff, replace output with +0.0f.
279 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
280 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
281
282 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
283 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
284
285 // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
286 __m128 vf_lo = _mm256_castps256_ps128(vf);
287 if (n & (4 * sizeof(float))) {
288 _mm_storeu_ps(y, vf_lo);
289 vf_lo = _mm256_extractf128_ps(vf, 1);
290 y += 4;
291 }
292 if (n & (2 * sizeof(float))) {
293 _mm_storel_pi((__m64*) y, vf_lo);
294 vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
295 y += 2;
296 }
297 if (n & (1 * sizeof(float))) {
298 _mm_store_ss(y, vf_lo);
299 }
300 }
301 }
302