• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29   // The smallest x for which sigmoidf(x) is normalized.
30   // This number is also the smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vone = _mm256_set1_ps(1.0f);
35   const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36 
37   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42 
43   for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
44     const __m256 vx0 = _mm256_loadu_ps(x);
45     const __m256 vx1 = _mm256_loadu_ps(x + 8);
46     const __m256 vx2 = _mm256_loadu_ps(x + 16);
47     x += 24;
48 
49     // General structure of the algorithm:
50     //           / exp(x) / (1 + exp(x)) if x <= 0
51     //   f[x] :=
52     //           \ 1 - f[-x] if x >= 0
53     //
54     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
55     // then replace result with 1 - f[z] if x >= 0.
56     const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
57     const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
58     const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
59 
60     // Compute reduced argument n := round(z / log(2)).
61     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
62     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
63     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
64     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
65     // the algorithm.
66     __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
67     __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
68     __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
69 
70     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
71     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
72     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
73     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
74     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
75 
76     // Subtract the large number back to get final n := round(z / log(2)).
77     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
78     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
79     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
80 
81     // Compute reduced argument t := z - n * log(2).
82     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
83     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
84     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
85 
86     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
87     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
88     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
89     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
90 
91     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
92     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
93     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
94 
95     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
96     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
97     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
98 
99     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
100     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
101     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
102 
103     // Reconstruct the exp(z) value:
104     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
105     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
106     //     = s + (t * s) * p
107     vt0 = _mm256_mul_ps(vt0, vs0);
108     vt1 = _mm256_mul_ps(vt1, vs1);
109     vt2 = _mm256_mul_ps(vt2, vs2);
110 
111     const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
112     const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
113     const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
114 
115     // Denominator of the sigmoid fraction: 1.0 + exp(z)
116     const __m256 vd0 = _mm256_add_ps(ve0, vone);
117     const __m256 vd1 = _mm256_add_ps(ve1, vone);
118     const __m256 vd2 = _mm256_add_ps(ve2, vone);
119 
120     // Use Newton-Raphson method to compute reciprocal of denominator.
121     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
122     // Thus the reciprocal of the denominator never overflows.
123     __m256 vr0 = _mm256_rcp_ps(vd0);
124     __m256 vr1 = _mm256_rcp_ps(vd1);
125     __m256 vr2 = _mm256_rcp_ps(vd2);
126 
127     vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
128     vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
129     vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
130 
131 
132     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
133     __m256 vf0 = _mm256_mul_ps(ve0, vr0);
134     __m256 vf1 = _mm256_mul_ps(ve1, vr1);
135     __m256 vf2 = _mm256_mul_ps(ve2, vr2);
136 
137     // For inputs below denormal cutoff, replace output with +0.0f.
138     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
139     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
140     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
141     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
142 
143     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
144     vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
145     vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
146     vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
147 
148     _mm256_storeu_ps(y, vf0);
149     _mm256_storeu_ps(y + 8, vf1);
150     _mm256_storeu_ps(y + 16, vf2);
151     y += 24;
152   }
153   for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
154     const __m256 vx = _mm256_loadu_ps(x);
155     x += 8;
156 
157     // General structure of the algorithm:
158     //           / exp(x) / (1 + exp(x)) if x <= 0
159     //   f[x] :=
160     //           \ 1 - f[-x] if x >= 0
161     //
162     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
163     // then replace result with 1 - f[z] if x >= 0.
164     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
165 
166     // Compute reduced argument n := round(z / log(2)).
167     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
168     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
169     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
170     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
171     // the algorithm.
172     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
173 
174     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
175     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
176     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
177 
178     // Subtract the large number back to get final n := round(z / log(2)).
179     vn = _mm256_sub_ps(vn, vmagic_bias);
180 
181     // Compute reduced argument t := z - n * log(2).
182     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
183 
184     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
185     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
186     vp = _mm256_fmadd_ps(vp, vt, vc3);
187     vp = _mm256_fmadd_ps(vp, vt, vc2);
188     vp = _mm256_fmadd_ps(vp, vt, vc1);
189 
190     // Reconstruct the exp(z) value:
191     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
192     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
193     //     = s + (t * s) * p
194     vt = _mm256_mul_ps(vt, vs);
195     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
196 
197     // Denominator of the sigmoid fraction: 1.0 + exp(z)
198     const __m256 vd = _mm256_add_ps(ve, vone);
199 
200     // Use Newton-Raphson method to compute reciprocal of denominator.
201     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
202     // Thus the reciprocal of the denominator never overflows.
203     __m256 vr = _mm256_rcp_ps(vd);
204     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
205 
206     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
207     __m256 vf = _mm256_mul_ps(ve, vr);
208 
209     // For inputs below denormal cutoff, replace output with +0.0f.
210     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
211     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
212 
213     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
214     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
215 
216     _mm256_storeu_ps(y, vf);
217     y += 8;
218   }
219   if XNN_UNLIKELY(n != 0) {
220     assert(n >= 1 * sizeof(float));
221     assert(n <= 7 * sizeof(float));
222     __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
223 
224     const __m256 vx = _mm256_maskload_ps(x, vmask);
225 
226     // General structure of the algorithm:
227     //           / exp(x) / (1 + exp(x)) if x <= 0
228     //   f[x] :=
229     //           \ 1 - f[-x] if x >= 0
230     //
231     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
232     // then replace result with 1 - f[z] if x >= 0.
233     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
234 
235     // Compute reduced argument n := round(z / log(2)).
236     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
237     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
238     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
239     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
240     // the algorithm.
241     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
242 
243     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
244     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
245     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
246 
247     // Subtract the large number back to get final n := round(z / log(2)).
248     vn = _mm256_sub_ps(vn, vmagic_bias);
249 
250     // Compute reduced argument t := z - n * log(2).
251     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
252 
253     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
254     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
255     vp = _mm256_fmadd_ps(vp, vt, vc3);
256     vp = _mm256_fmadd_ps(vp, vt, vc2);
257     vp = _mm256_fmadd_ps(vp, vt, vc1);
258 
259     // Reconstruct the exp(z) value:
260     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
261     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
262     //     = s + (t * s) * p
263     vt = _mm256_mul_ps(vt, vs);
264     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
265 
266     // Denominator of the sigmoid fraction: 1.0 + exp(z)
267     const __m256 vd = _mm256_add_ps(ve, vone);
268 
269     // Use Newton-Raphson method to compute reciprocal of denominator.
270     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
271     // Thus the reciprocal of the denominator never overflows.
272     __m256 vr = _mm256_rcp_ps(vd);
273     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
274 
275     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
276     __m256 vf = _mm256_mul_ps(ve, vr);
277 
278     // For inputs below denormal cutoff, replace output with +0.0f.
279     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
280     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
281 
282     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
283     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
284 
285     // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
286     __m128 vf_lo = _mm256_castps256_ps128(vf);
287     if (n & (4 * sizeof(float))) {
288       _mm_storeu_ps(y, vf_lo);
289       vf_lo = _mm256_extractf128_ps(vf, 1);
290       y += 4;
291     }
292     if (n & (2 * sizeof(float))) {
293       _mm_storel_pi((__m64*) y, vf_lo);
294       vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
295       y += 2;
296     }
297     if (n & (1 * sizeof(float))) {
298       _mm_store_ss(y, vf_lo);
299     }
300   }
301 }
302