• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29   // The smallest x for which sigmoidf(x) is normalized.
30   // This number is also the smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vone = _mm256_set1_ps(1.0f);
35   const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36 
37   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42 
43   for (; n >= 32 * sizeof(float); n -= 32 * sizeof(float)) {
44     const __m256 vx0 = _mm256_loadu_ps(x);
45     const __m256 vx1 = _mm256_loadu_ps(x + 8);
46     const __m256 vx2 = _mm256_loadu_ps(x + 16);
47     const __m256 vx3 = _mm256_loadu_ps(x + 24);
48     x += 32;
49 
50     // General structure of the algorithm:
51     //           / exp(x) / (1 + exp(x)) if x <= 0
52     //   f[x] :=
53     //           \ 1 - f[-x] if x >= 0
54     //
55     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
56     // then replace result with 1 - f[z] if x >= 0.
57     const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
58     const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
59     const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
60     const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
61 
62     // Compute reduced argument n := round(z / log(2)).
63     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
64     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
65     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
66     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
67     // the algorithm.
68     __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
69     __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
70     __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
71     __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
72 
73     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
74     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
75     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
76     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
77     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
78     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
79 
80     // Subtract the large number back to get final n := round(z / log(2)).
81     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
82     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
83     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
84     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
85 
86     // Compute reduced argument t := z - n * log(2).
87     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
88     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
89     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
90     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
91 
92     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
93     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
94     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
95     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
96     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
97 
98     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
99     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
100     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
101     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
102 
103     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
104     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
105     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
106     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
107 
108     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
109     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
110     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
111     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
112 
113     // Reconstruct the exp(z) value:
114     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
115     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
116     //     = s + (t * s) * p
117     vt0 = _mm256_mul_ps(vt0, vs0);
118     vt1 = _mm256_mul_ps(vt1, vs1);
119     vt2 = _mm256_mul_ps(vt2, vs2);
120     vt3 = _mm256_mul_ps(vt3, vs3);
121 
122     const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
123     const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
124     const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
125     const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
126 
127     // Denominator of the sigmoid fraction: 1.0 + exp(z)
128     const __m256 vd0 = _mm256_add_ps(ve0, vone);
129     const __m256 vd1 = _mm256_add_ps(ve1, vone);
130     const __m256 vd2 = _mm256_add_ps(ve2, vone);
131     const __m256 vd3 = _mm256_add_ps(ve3, vone);
132 
133     // Use Newton-Raphson method to compute reciprocal of denominator.
134     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
135     // Thus the reciprocal of the denominator never overflows.
136     __m256 vr0 = _mm256_rcp_ps(vd0);
137     __m256 vr1 = _mm256_rcp_ps(vd1);
138     __m256 vr2 = _mm256_rcp_ps(vd2);
139     __m256 vr3 = _mm256_rcp_ps(vd3);
140 
141     vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
142     vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
143     vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
144     vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
145 
146 
147     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
148     __m256 vf0 = _mm256_mul_ps(ve0, vr0);
149     __m256 vf1 = _mm256_mul_ps(ve1, vr1);
150     __m256 vf2 = _mm256_mul_ps(ve2, vr2);
151     __m256 vf3 = _mm256_mul_ps(ve3, vr3);
152 
153     // For inputs below denormal cutoff, replace output with +0.0f.
154     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
155     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
156     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
157     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
158     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
159 
160     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
161     vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
162     vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
163     vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
164     vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
165 
166     _mm256_storeu_ps(y, vf0);
167     _mm256_storeu_ps(y + 8, vf1);
168     _mm256_storeu_ps(y + 16, vf2);
169     _mm256_storeu_ps(y + 24, vf3);
170     y += 32;
171   }
172   for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
173     const __m256 vx = _mm256_loadu_ps(x);
174     x += 8;
175 
176     // General structure of the algorithm:
177     //           / exp(x) / (1 + exp(x)) if x <= 0
178     //   f[x] :=
179     //           \ 1 - f[-x] if x >= 0
180     //
181     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
182     // then replace result with 1 - f[z] if x >= 0.
183     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
184 
185     // Compute reduced argument n := round(z / log(2)).
186     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
187     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
188     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
189     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
190     // the algorithm.
191     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
192 
193     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
194     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
195     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
196 
197     // Subtract the large number back to get final n := round(z / log(2)).
198     vn = _mm256_sub_ps(vn, vmagic_bias);
199 
200     // Compute reduced argument t := z - n * log(2).
201     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
202 
203     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
204     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
205     vp = _mm256_fmadd_ps(vp, vt, vc3);
206     vp = _mm256_fmadd_ps(vp, vt, vc2);
207     vp = _mm256_fmadd_ps(vp, vt, vc1);
208 
209     // Reconstruct the exp(z) value:
210     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
211     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
212     //     = s + (t * s) * p
213     vt = _mm256_mul_ps(vt, vs);
214     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
215 
216     // Denominator of the sigmoid fraction: 1.0 + exp(z)
217     const __m256 vd = _mm256_add_ps(ve, vone);
218 
219     // Use Newton-Raphson method to compute reciprocal of denominator.
220     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
221     // Thus the reciprocal of the denominator never overflows.
222     __m256 vr = _mm256_rcp_ps(vd);
223     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
224 
225     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
226     __m256 vf = _mm256_mul_ps(ve, vr);
227 
228     // For inputs below denormal cutoff, replace output with +0.0f.
229     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
230     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
231 
232     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
233     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
234 
235     _mm256_storeu_ps(y, vf);
236     y += 8;
237   }
238   if XNN_UNLIKELY(n != 0) {
239     assert(n >= 1 * sizeof(float));
240     assert(n <= 7 * sizeof(float));
241     __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
242 
243     const __m256 vx = _mm256_maskload_ps(x, vmask);
244 
245     // General structure of the algorithm:
246     //           / exp(x) / (1 + exp(x)) if x <= 0
247     //   f[x] :=
248     //           \ 1 - f[-x] if x >= 0
249     //
250     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
251     // then replace result with 1 - f[z] if x >= 0.
252     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
253 
254     // Compute reduced argument n := round(z / log(2)).
255     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
256     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
257     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
258     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
259     // the algorithm.
260     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
261 
262     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
263     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
264     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
265 
266     // Subtract the large number back to get final n := round(z / log(2)).
267     vn = _mm256_sub_ps(vn, vmagic_bias);
268 
269     // Compute reduced argument t := z - n * log(2).
270     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
271 
272     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
273     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
274     vp = _mm256_fmadd_ps(vp, vt, vc3);
275     vp = _mm256_fmadd_ps(vp, vt, vc2);
276     vp = _mm256_fmadd_ps(vp, vt, vc1);
277 
278     // Reconstruct the exp(z) value:
279     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
280     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
281     //     = s + (t * s) * p
282     vt = _mm256_mul_ps(vt, vs);
283     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
284 
285     // Denominator of the sigmoid fraction: 1.0 + exp(z)
286     const __m256 vd = _mm256_add_ps(ve, vone);
287 
288     // Use Newton-Raphson method to compute reciprocal of denominator.
289     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
290     // Thus the reciprocal of the denominator never overflows.
291     __m256 vr = _mm256_rcp_ps(vd);
292     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
293 
294     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
295     __m256 vf = _mm256_mul_ps(ve, vr);
296 
297     // For inputs below denormal cutoff, replace output with +0.0f.
298     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
299     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
300 
301     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
302     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
303 
304     // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
305     __m128 vf_lo = _mm256_castps256_ps128(vf);
306     if (n & (4 * sizeof(float))) {
307       _mm_storeu_ps(y, vf_lo);
308       vf_lo = _mm256_extractf128_ps(vf, 1);
309       y += 4;
310     }
311     if (n & (2 * sizeof(float))) {
312       _mm_storel_pi((__m64*) y, vf_lo);
313       vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
314       y += 2;
315     }
316     if (n & (1 * sizeof(float))) {
317       _mm_store_ss(y, vf_lo);
318     }
319   }
320 }
321