1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/avx2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <immintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29 // The smallest x for which sigmoidf(x) is normalized.
30 // This number is also the smallest x for which expf(x) is normalized.
31 const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33 const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34 const __m256 vone = _mm256_set1_ps(1.0f);
35 const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36
37 const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38 const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39 const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40 const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41 const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42
43 for (; n >= 32 * sizeof(float); n -= 32 * sizeof(float)) {
44 const __m256 vx0 = _mm256_loadu_ps(x);
45 const __m256 vx1 = _mm256_loadu_ps(x + 8);
46 const __m256 vx2 = _mm256_loadu_ps(x + 16);
47 const __m256 vx3 = _mm256_loadu_ps(x + 24);
48 x += 32;
49
50 // General structure of the algorithm:
51 // / exp(x) / (1 + exp(x)) if x <= 0
52 // f[x] :=
53 // \ 1 - f[-x] if x >= 0
54 //
55 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
56 // then replace result with 1 - f[z] if x >= 0.
57 const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
58 const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
59 const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
60 const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
61
62 // Compute reduced argument n := round(z / log(2)).
63 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
64 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
65 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
66 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
67 // the algorithm.
68 __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
69 __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
70 __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
71 __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
72
73 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
74 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
75 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
76 const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
77 const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
78 const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
79
80 // Subtract the large number back to get final n := round(z / log(2)).
81 vn0 = _mm256_sub_ps(vn0, vmagic_bias);
82 vn1 = _mm256_sub_ps(vn1, vmagic_bias);
83 vn2 = _mm256_sub_ps(vn2, vmagic_bias);
84 vn3 = _mm256_sub_ps(vn3, vmagic_bias);
85
86 // Compute reduced argument t := z - n * log(2).
87 __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
88 __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
89 __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
90 __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
91
92 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
93 __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
94 __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
95 __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
96 __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
97
98 vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
99 vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
100 vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
101 vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
102
103 vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
104 vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
105 vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
106 vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
107
108 vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
109 vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
110 vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
111 vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
112
113 // Reconstruct the exp(z) value:
114 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
115 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
116 // = s + (t * s) * p
117 vt0 = _mm256_mul_ps(vt0, vs0);
118 vt1 = _mm256_mul_ps(vt1, vs1);
119 vt2 = _mm256_mul_ps(vt2, vs2);
120 vt3 = _mm256_mul_ps(vt3, vs3);
121
122 const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
123 const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
124 const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
125 const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
126
127 // Denominator of the sigmoid fraction: 1.0 + exp(z)
128 const __m256 vd0 = _mm256_add_ps(ve0, vone);
129 const __m256 vd1 = _mm256_add_ps(ve1, vone);
130 const __m256 vd2 = _mm256_add_ps(ve2, vone);
131 const __m256 vd3 = _mm256_add_ps(ve3, vone);
132
133 // Use Newton-Raphson method to compute reciprocal of denominator.
134 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
135 // Thus the reciprocal of the denominator never overflows.
136 __m256 vr0 = _mm256_rcp_ps(vd0);
137 __m256 vr1 = _mm256_rcp_ps(vd1);
138 __m256 vr2 = _mm256_rcp_ps(vd2);
139 __m256 vr3 = _mm256_rcp_ps(vd3);
140
141 vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
142 vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
143 vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
144 vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
145
146
147 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
148 __m256 vf0 = _mm256_mul_ps(ve0, vr0);
149 __m256 vf1 = _mm256_mul_ps(ve1, vr1);
150 __m256 vf2 = _mm256_mul_ps(ve2, vr2);
151 __m256 vf3 = _mm256_mul_ps(ve3, vr3);
152
153 // For inputs below denormal cutoff, replace output with +0.0f.
154 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
155 vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
156 vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
157 vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
158 vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
159
160 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
161 vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
162 vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
163 vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
164 vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
165
166 _mm256_storeu_ps(y, vf0);
167 _mm256_storeu_ps(y + 8, vf1);
168 _mm256_storeu_ps(y + 16, vf2);
169 _mm256_storeu_ps(y + 24, vf3);
170 y += 32;
171 }
172 for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
173 const __m256 vx = _mm256_loadu_ps(x);
174 x += 8;
175
176 // General structure of the algorithm:
177 // / exp(x) / (1 + exp(x)) if x <= 0
178 // f[x] :=
179 // \ 1 - f[-x] if x >= 0
180 //
181 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
182 // then replace result with 1 - f[z] if x >= 0.
183 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
184
185 // Compute reduced argument n := round(z / log(2)).
186 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
187 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
188 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
189 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
190 // the algorithm.
191 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
192
193 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
194 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
195 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
196
197 // Subtract the large number back to get final n := round(z / log(2)).
198 vn = _mm256_sub_ps(vn, vmagic_bias);
199
200 // Compute reduced argument t := z - n * log(2).
201 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
202
203 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
204 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
205 vp = _mm256_fmadd_ps(vp, vt, vc3);
206 vp = _mm256_fmadd_ps(vp, vt, vc2);
207 vp = _mm256_fmadd_ps(vp, vt, vc1);
208
209 // Reconstruct the exp(z) value:
210 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
211 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
212 // = s + (t * s) * p
213 vt = _mm256_mul_ps(vt, vs);
214 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
215
216 // Denominator of the sigmoid fraction: 1.0 + exp(z)
217 const __m256 vd = _mm256_add_ps(ve, vone);
218
219 // Use Newton-Raphson method to compute reciprocal of denominator.
220 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
221 // Thus the reciprocal of the denominator never overflows.
222 __m256 vr = _mm256_rcp_ps(vd);
223 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
224
225 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
226 __m256 vf = _mm256_mul_ps(ve, vr);
227
228 // For inputs below denormal cutoff, replace output with +0.0f.
229 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
230 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
231
232 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
233 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
234
235 _mm256_storeu_ps(y, vf);
236 y += 8;
237 }
238 if XNN_UNLIKELY(n != 0) {
239 assert(n >= 1 * sizeof(float));
240 assert(n <= 7 * sizeof(float));
241 __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
242
243 const __m256 vx = _mm256_maskload_ps(x, vmask);
244
245 // General structure of the algorithm:
246 // / exp(x) / (1 + exp(x)) if x <= 0
247 // f[x] :=
248 // \ 1 - f[-x] if x >= 0
249 //
250 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
251 // then replace result with 1 - f[z] if x >= 0.
252 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
253
254 // Compute reduced argument n := round(z / log(2)).
255 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
256 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
257 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
258 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
259 // the algorithm.
260 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
261
262 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
263 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
264 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
265
266 // Subtract the large number back to get final n := round(z / log(2)).
267 vn = _mm256_sub_ps(vn, vmagic_bias);
268
269 // Compute reduced argument t := z - n * log(2).
270 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
271
272 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
273 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
274 vp = _mm256_fmadd_ps(vp, vt, vc3);
275 vp = _mm256_fmadd_ps(vp, vt, vc2);
276 vp = _mm256_fmadd_ps(vp, vt, vc1);
277
278 // Reconstruct the exp(z) value:
279 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
280 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
281 // = s + (t * s) * p
282 vt = _mm256_mul_ps(vt, vs);
283 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
284
285 // Denominator of the sigmoid fraction: 1.0 + exp(z)
286 const __m256 vd = _mm256_add_ps(ve, vone);
287
288 // Use Newton-Raphson method to compute reciprocal of denominator.
289 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
290 // Thus the reciprocal of the denominator never overflows.
291 __m256 vr = _mm256_rcp_ps(vd);
292 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
293
294 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
295 __m256 vf = _mm256_mul_ps(ve, vr);
296
297 // For inputs below denormal cutoff, replace output with +0.0f.
298 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
299 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
300
301 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
302 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
303
304 // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
305 __m128 vf_lo = _mm256_castps256_ps128(vf);
306 if (n & (4 * sizeof(float))) {
307 _mm_storeu_ps(y, vf_lo);
308 vf_lo = _mm256_extractf128_ps(vf, 1);
309 y += 4;
310 }
311 if (n & (2 * sizeof(float))) {
312 _mm_storel_pi((__m64*) y, vf_lo);
313 vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
314 y += 2;
315 }
316 if (n & (1 * sizeof(float))) {
317 _mm_store_ss(y, vf_lo);
318 }
319 }
320 }
321