• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29   // The smallest x for which sigmoidf(x) is normalized.
30   // This number is also the smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vone = _mm256_set1_ps(1.0f);
35   const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36 
37   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42 
43   for (; n >= 40 * sizeof(float); n -= 40 * sizeof(float)) {
44     const __m256 vx0 = _mm256_loadu_ps(x);
45     const __m256 vx1 = _mm256_loadu_ps(x + 8);
46     const __m256 vx2 = _mm256_loadu_ps(x + 16);
47     const __m256 vx3 = _mm256_loadu_ps(x + 24);
48     const __m256 vx4 = _mm256_loadu_ps(x + 32);
49     x += 40;
50 
51     // General structure of the algorithm:
52     //           / exp(x) / (1 + exp(x)) if x <= 0
53     //   f[x] :=
54     //           \ 1 - f[-x] if x >= 0
55     //
56     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
57     // then replace result with 1 - f[z] if x >= 0.
58     const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
59     const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
60     const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
61     const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
62     const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
63 
64     // Compute reduced argument n := round(z / log(2)).
65     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
66     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
67     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
68     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
69     // the algorithm.
70     __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
71     __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
72     __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
73     __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
74     __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
75 
76     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
77     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
78     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
79     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
80     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
81     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
82     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
83 
84     // Subtract the large number back to get final n := round(z / log(2)).
85     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
86     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
87     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
88     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
89     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
90 
91     // Compute reduced argument t := z - n * log(2).
92     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
93     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
94     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
95     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
96     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
97 
98     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
99     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
100     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
101     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
102     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
103     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
104 
105     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
106     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
107     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
108     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
109     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
110 
111     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
112     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
113     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
114     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
115     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
116 
117     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
118     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
119     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
120     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
121     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
122 
123     // Reconstruct the exp(z) value:
124     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
125     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
126     //     = s + (t * s) * p
127     vt0 = _mm256_mul_ps(vt0, vs0);
128     vt1 = _mm256_mul_ps(vt1, vs1);
129     vt2 = _mm256_mul_ps(vt2, vs2);
130     vt3 = _mm256_mul_ps(vt3, vs3);
131     vt4 = _mm256_mul_ps(vt4, vs4);
132 
133     const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
134     const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
135     const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
136     const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
137     const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
138 
139     // Denominator of the sigmoid fraction: 1.0 + exp(z)
140     const __m256 vd0 = _mm256_add_ps(ve0, vone);
141     const __m256 vd1 = _mm256_add_ps(ve1, vone);
142     const __m256 vd2 = _mm256_add_ps(ve2, vone);
143     const __m256 vd3 = _mm256_add_ps(ve3, vone);
144     const __m256 vd4 = _mm256_add_ps(ve4, vone);
145 
146     // Use Newton-Raphson method to compute reciprocal of denominator.
147     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
148     // Thus the reciprocal of the denominator never overflows.
149     __m256 vr0 = _mm256_rcp_ps(vd0);
150     __m256 vr1 = _mm256_rcp_ps(vd1);
151     __m256 vr2 = _mm256_rcp_ps(vd2);
152     __m256 vr3 = _mm256_rcp_ps(vd3);
153     __m256 vr4 = _mm256_rcp_ps(vd4);
154 
155     vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
156     vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
157     vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
158     vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
159     vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
160 
161 
162     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
163     __m256 vf0 = _mm256_mul_ps(ve0, vr0);
164     __m256 vf1 = _mm256_mul_ps(ve1, vr1);
165     __m256 vf2 = _mm256_mul_ps(ve2, vr2);
166     __m256 vf3 = _mm256_mul_ps(ve3, vr3);
167     __m256 vf4 = _mm256_mul_ps(ve4, vr4);
168 
169     // For inputs below denormal cutoff, replace output with +0.0f.
170     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
171     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
172     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
173     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
174     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
175     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
176 
177     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
178     vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
179     vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
180     vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
181     vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
182     vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
183 
184     _mm256_storeu_ps(y, vf0);
185     _mm256_storeu_ps(y + 8, vf1);
186     _mm256_storeu_ps(y + 16, vf2);
187     _mm256_storeu_ps(y + 24, vf3);
188     _mm256_storeu_ps(y + 32, vf4);
189     y += 40;
190   }
191   for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
192     const __m256 vx = _mm256_loadu_ps(x);
193     x += 8;
194 
195     // General structure of the algorithm:
196     //           / exp(x) / (1 + exp(x)) if x <= 0
197     //   f[x] :=
198     //           \ 1 - f[-x] if x >= 0
199     //
200     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
201     // then replace result with 1 - f[z] if x >= 0.
202     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
203 
204     // Compute reduced argument n := round(z / log(2)).
205     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
206     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
207     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
208     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
209     // the algorithm.
210     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
211 
212     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
213     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
214     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
215 
216     // Subtract the large number back to get final n := round(z / log(2)).
217     vn = _mm256_sub_ps(vn, vmagic_bias);
218 
219     // Compute reduced argument t := z - n * log(2).
220     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
221 
222     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
223     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
224     vp = _mm256_fmadd_ps(vp, vt, vc3);
225     vp = _mm256_fmadd_ps(vp, vt, vc2);
226     vp = _mm256_fmadd_ps(vp, vt, vc1);
227 
228     // Reconstruct the exp(z) value:
229     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
230     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
231     //     = s + (t * s) * p
232     vt = _mm256_mul_ps(vt, vs);
233     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
234 
235     // Denominator of the sigmoid fraction: 1.0 + exp(z)
236     const __m256 vd = _mm256_add_ps(ve, vone);
237 
238     // Use Newton-Raphson method to compute reciprocal of denominator.
239     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
240     // Thus the reciprocal of the denominator never overflows.
241     __m256 vr = _mm256_rcp_ps(vd);
242     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
243 
244     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
245     __m256 vf = _mm256_mul_ps(ve, vr);
246 
247     // For inputs below denormal cutoff, replace output with +0.0f.
248     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
249     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
250 
251     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
252     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
253 
254     _mm256_storeu_ps(y, vf);
255     y += 8;
256   }
257   if XNN_UNLIKELY(n != 0) {
258     assert(n >= 1 * sizeof(float));
259     assert(n <= 7 * sizeof(float));
260     __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
261 
262     const __m256 vx = _mm256_maskload_ps(x, vmask);
263 
264     // General structure of the algorithm:
265     //           / exp(x) / (1 + exp(x)) if x <= 0
266     //   f[x] :=
267     //           \ 1 - f[-x] if x >= 0
268     //
269     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
270     // then replace result with 1 - f[z] if x >= 0.
271     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
272 
273     // Compute reduced argument n := round(z / log(2)).
274     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
275     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
276     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
277     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
278     // the algorithm.
279     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
280 
281     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
282     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
283     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
284 
285     // Subtract the large number back to get final n := round(z / log(2)).
286     vn = _mm256_sub_ps(vn, vmagic_bias);
287 
288     // Compute reduced argument t := z - n * log(2).
289     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
290 
291     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
292     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
293     vp = _mm256_fmadd_ps(vp, vt, vc3);
294     vp = _mm256_fmadd_ps(vp, vt, vc2);
295     vp = _mm256_fmadd_ps(vp, vt, vc1);
296 
297     // Reconstruct the exp(z) value:
298     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
299     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
300     //     = s + (t * s) * p
301     vt = _mm256_mul_ps(vt, vs);
302     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
303 
304     // Denominator of the sigmoid fraction: 1.0 + exp(z)
305     const __m256 vd = _mm256_add_ps(ve, vone);
306 
307     // Use Newton-Raphson method to compute reciprocal of denominator.
308     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
309     // Thus the reciprocal of the denominator never overflows.
310     __m256 vr = _mm256_rcp_ps(vd);
311     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
312 
313     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
314     __m256 vf = _mm256_mul_ps(ve, vr);
315 
316     // For inputs below denormal cutoff, replace output with +0.0f.
317     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
318     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
319 
320     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
321     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
322 
323     // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
324     __m128 vf_lo = _mm256_castps256_ps128(vf);
325     if (n & (4 * sizeof(float))) {
326       _mm_storeu_ps(y, vf_lo);
327       vf_lo = _mm256_extractf128_ps(vf, 1);
328       y += 4;
329     }
330     if (n & (2 * sizeof(float))) {
331       _mm_storel_pi((__m64*) y, vf_lo);
332       vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
333       y += 2;
334     }
335     if (n & (1 * sizeof(float))) {
336       _mm_store_ss(y, vf_lo);
337     }
338   }
339 }
340