1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/avx2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <immintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29 // The smallest x for which sigmoidf(x) is normalized.
30 // This number is also the smallest x for which expf(x) is normalized.
31 const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33 const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34 const __m256 vone = _mm256_set1_ps(1.0f);
35 const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36
37 const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38 const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39 const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40 const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41 const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42
43 for (; n >= 40 * sizeof(float); n -= 40 * sizeof(float)) {
44 const __m256 vx0 = _mm256_loadu_ps(x);
45 const __m256 vx1 = _mm256_loadu_ps(x + 8);
46 const __m256 vx2 = _mm256_loadu_ps(x + 16);
47 const __m256 vx3 = _mm256_loadu_ps(x + 24);
48 const __m256 vx4 = _mm256_loadu_ps(x + 32);
49 x += 40;
50
51 // General structure of the algorithm:
52 // / exp(x) / (1 + exp(x)) if x <= 0
53 // f[x] :=
54 // \ 1 - f[-x] if x >= 0
55 //
56 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
57 // then replace result with 1 - f[z] if x >= 0.
58 const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
59 const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
60 const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
61 const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
62 const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
63
64 // Compute reduced argument n := round(z / log(2)).
65 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
66 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
67 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
68 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
69 // the algorithm.
70 __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
71 __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
72 __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
73 __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
74 __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
75
76 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
77 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
78 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
79 const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
80 const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
81 const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
82 const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
83
84 // Subtract the large number back to get final n := round(z / log(2)).
85 vn0 = _mm256_sub_ps(vn0, vmagic_bias);
86 vn1 = _mm256_sub_ps(vn1, vmagic_bias);
87 vn2 = _mm256_sub_ps(vn2, vmagic_bias);
88 vn3 = _mm256_sub_ps(vn3, vmagic_bias);
89 vn4 = _mm256_sub_ps(vn4, vmagic_bias);
90
91 // Compute reduced argument t := z - n * log(2).
92 __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
93 __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
94 __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
95 __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
96 __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
97
98 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
99 __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
100 __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
101 __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
102 __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
103 __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
104
105 vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
106 vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
107 vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
108 vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
109 vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
110
111 vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
112 vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
113 vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
114 vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
115 vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
116
117 vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
118 vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
119 vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
120 vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
121 vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
122
123 // Reconstruct the exp(z) value:
124 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
125 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
126 // = s + (t * s) * p
127 vt0 = _mm256_mul_ps(vt0, vs0);
128 vt1 = _mm256_mul_ps(vt1, vs1);
129 vt2 = _mm256_mul_ps(vt2, vs2);
130 vt3 = _mm256_mul_ps(vt3, vs3);
131 vt4 = _mm256_mul_ps(vt4, vs4);
132
133 const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
134 const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
135 const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
136 const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
137 const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
138
139 // Denominator of the sigmoid fraction: 1.0 + exp(z)
140 const __m256 vd0 = _mm256_add_ps(ve0, vone);
141 const __m256 vd1 = _mm256_add_ps(ve1, vone);
142 const __m256 vd2 = _mm256_add_ps(ve2, vone);
143 const __m256 vd3 = _mm256_add_ps(ve3, vone);
144 const __m256 vd4 = _mm256_add_ps(ve4, vone);
145
146 // Use Newton-Raphson method to compute reciprocal of denominator.
147 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
148 // Thus the reciprocal of the denominator never overflows.
149 __m256 vr0 = _mm256_rcp_ps(vd0);
150 __m256 vr1 = _mm256_rcp_ps(vd1);
151 __m256 vr2 = _mm256_rcp_ps(vd2);
152 __m256 vr3 = _mm256_rcp_ps(vd3);
153 __m256 vr4 = _mm256_rcp_ps(vd4);
154
155 vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
156 vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
157 vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
158 vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
159 vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
160
161
162 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
163 __m256 vf0 = _mm256_mul_ps(ve0, vr0);
164 __m256 vf1 = _mm256_mul_ps(ve1, vr1);
165 __m256 vf2 = _mm256_mul_ps(ve2, vr2);
166 __m256 vf3 = _mm256_mul_ps(ve3, vr3);
167 __m256 vf4 = _mm256_mul_ps(ve4, vr4);
168
169 // For inputs below denormal cutoff, replace output with +0.0f.
170 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
171 vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
172 vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
173 vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
174 vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
175 vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
176
177 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
178 vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
179 vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
180 vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
181 vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
182 vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
183
184 _mm256_storeu_ps(y, vf0);
185 _mm256_storeu_ps(y + 8, vf1);
186 _mm256_storeu_ps(y + 16, vf2);
187 _mm256_storeu_ps(y + 24, vf3);
188 _mm256_storeu_ps(y + 32, vf4);
189 y += 40;
190 }
191 for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
192 const __m256 vx = _mm256_loadu_ps(x);
193 x += 8;
194
195 // General structure of the algorithm:
196 // / exp(x) / (1 + exp(x)) if x <= 0
197 // f[x] :=
198 // \ 1 - f[-x] if x >= 0
199 //
200 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
201 // then replace result with 1 - f[z] if x >= 0.
202 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
203
204 // Compute reduced argument n := round(z / log(2)).
205 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
206 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
207 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
208 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
209 // the algorithm.
210 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
211
212 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
213 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
214 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
215
216 // Subtract the large number back to get final n := round(z / log(2)).
217 vn = _mm256_sub_ps(vn, vmagic_bias);
218
219 // Compute reduced argument t := z - n * log(2).
220 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
221
222 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
223 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
224 vp = _mm256_fmadd_ps(vp, vt, vc3);
225 vp = _mm256_fmadd_ps(vp, vt, vc2);
226 vp = _mm256_fmadd_ps(vp, vt, vc1);
227
228 // Reconstruct the exp(z) value:
229 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
230 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
231 // = s + (t * s) * p
232 vt = _mm256_mul_ps(vt, vs);
233 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
234
235 // Denominator of the sigmoid fraction: 1.0 + exp(z)
236 const __m256 vd = _mm256_add_ps(ve, vone);
237
238 // Use Newton-Raphson method to compute reciprocal of denominator.
239 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
240 // Thus the reciprocal of the denominator never overflows.
241 __m256 vr = _mm256_rcp_ps(vd);
242 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
243
244 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
245 __m256 vf = _mm256_mul_ps(ve, vr);
246
247 // For inputs below denormal cutoff, replace output with +0.0f.
248 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
249 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
250
251 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
252 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
253
254 _mm256_storeu_ps(y, vf);
255 y += 8;
256 }
257 if XNN_UNLIKELY(n != 0) {
258 assert(n >= 1 * sizeof(float));
259 assert(n <= 7 * sizeof(float));
260 __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
261
262 const __m256 vx = _mm256_maskload_ps(x, vmask);
263
264 // General structure of the algorithm:
265 // / exp(x) / (1 + exp(x)) if x <= 0
266 // f[x] :=
267 // \ 1 - f[-x] if x >= 0
268 //
269 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
270 // then replace result with 1 - f[z] if x >= 0.
271 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
272
273 // Compute reduced argument n := round(z / log(2)).
274 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
275 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
276 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
277 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
278 // the algorithm.
279 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
280
281 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
282 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
283 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
284
285 // Subtract the large number back to get final n := round(z / log(2)).
286 vn = _mm256_sub_ps(vn, vmagic_bias);
287
288 // Compute reduced argument t := z - n * log(2).
289 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
290
291 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
292 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
293 vp = _mm256_fmadd_ps(vp, vt, vc3);
294 vp = _mm256_fmadd_ps(vp, vt, vc2);
295 vp = _mm256_fmadd_ps(vp, vt, vc1);
296
297 // Reconstruct the exp(z) value:
298 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
299 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
300 // = s + (t * s) * p
301 vt = _mm256_mul_ps(vt, vs);
302 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
303
304 // Denominator of the sigmoid fraction: 1.0 + exp(z)
305 const __m256 vd = _mm256_add_ps(ve, vone);
306
307 // Use Newton-Raphson method to compute reciprocal of denominator.
308 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
309 // Thus the reciprocal of the denominator never overflows.
310 __m256 vr = _mm256_rcp_ps(vd);
311 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
312
313 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
314 __m256 vf = _mm256_mul_ps(ve, vr);
315
316 // For inputs below denormal cutoff, replace output with +0.0f.
317 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
318 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
319
320 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
321 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
322
323 // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
324 __m128 vf_lo = _mm256_castps256_ps128(vf);
325 if (n & (4 * sizeof(float))) {
326 _mm_storeu_ps(y, vf_lo);
327 vf_lo = _mm256_extractf128_ps(vf, 1);
328 y += 4;
329 }
330 if (n & (2 * sizeof(float))) {
331 _mm_storel_pi((__m64*) y, vf_lo);
332 vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
333 y += 2;
334 }
335 if (n & (1 * sizeof(float))) {
336 _mm_store_ss(y, vf_lo);
337 }
338 }
339 }
340