1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/avx2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <immintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29 // The smallest x for which sigmoidf(x) is normalized.
30 // This number is also the smallest x for which expf(x) is normalized.
31 const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33 const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34 const __m256 vone = _mm256_set1_ps(1.0f);
35 const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36
37 const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38 const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39 const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40 const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41 const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42
43 for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
44 const __m256 vx0 = _mm256_loadu_ps(x);
45 const __m256 vx1 = _mm256_loadu_ps(x + 8);
46 x += 16;
47
48 // General structure of the algorithm:
49 // / exp(x) / (1 + exp(x)) if x <= 0
50 // f[x] :=
51 // \ 1 - f[-x] if x >= 0
52 //
53 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
54 // then replace result with 1 - f[z] if x >= 0.
55 const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
56 const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
57
58 // Compute reduced argument n := round(z / log(2)).
59 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
60 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
61 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
62 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
63 // the algorithm.
64 __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
65 __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
66
67 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
68 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
69 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
70 const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
71
72 // Subtract the large number back to get final n := round(z / log(2)).
73 vn0 = _mm256_sub_ps(vn0, vmagic_bias);
74 vn1 = _mm256_sub_ps(vn1, vmagic_bias);
75
76 // Compute reduced argument t := z - n * log(2).
77 __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
78 __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
79
80 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
81 __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
82 __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
83
84 vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
85 vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
86
87 vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
88 vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
89
90 vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
91 vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
92
93 // Reconstruct the exp(z) value:
94 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
95 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
96 // = s + (t * s) * p
97 vt0 = _mm256_mul_ps(vt0, vs0);
98 vt1 = _mm256_mul_ps(vt1, vs1);
99
100 const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
101 const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
102
103 // Denominator of the sigmoid fraction: 1.0 + exp(z)
104 const __m256 vd0 = _mm256_add_ps(ve0, vone);
105 const __m256 vd1 = _mm256_add_ps(ve1, vone);
106
107 // Use Newton-Raphson method to compute reciprocal of denominator.
108 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
109 // Thus the reciprocal of the denominator never overflows.
110 __m256 vr0 = _mm256_rcp_ps(vd0);
111 __m256 vr1 = _mm256_rcp_ps(vd1);
112
113 vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
114 vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
115
116 vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
117 vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
118
119 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
120 __m256 vf0 = _mm256_mul_ps(ve0, vr0);
121 __m256 vf1 = _mm256_mul_ps(ve1, vr1);
122
123 // For inputs below denormal cutoff, replace output with +0.0f.
124 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
125 vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
126 vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
127
128 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
129 vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
130 vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
131
132 _mm256_storeu_ps(y, vf0);
133 _mm256_storeu_ps(y + 8, vf1);
134 y += 16;
135 }
136 for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
137 const __m256 vx = _mm256_loadu_ps(x);
138 x += 8;
139
140 // General structure of the algorithm:
141 // / exp(x) / (1 + exp(x)) if x <= 0
142 // f[x] :=
143 // \ 1 - f[-x] if x >= 0
144 //
145 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
146 // then replace result with 1 - f[z] if x >= 0.
147 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
148
149 // Compute reduced argument n := round(z / log(2)).
150 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
151 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
152 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
153 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
154 // the algorithm.
155 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
156
157 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
158 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
159 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
160
161 // Subtract the large number back to get final n := round(z / log(2)).
162 vn = _mm256_sub_ps(vn, vmagic_bias);
163
164 // Compute reduced argument t := z - n * log(2).
165 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
166
167 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
168 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
169 vp = _mm256_fmadd_ps(vp, vt, vc3);
170 vp = _mm256_fmadd_ps(vp, vt, vc2);
171 vp = _mm256_fmadd_ps(vp, vt, vc1);
172
173 // Reconstruct the exp(z) value:
174 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
175 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
176 // = s + (t * s) * p
177 vt = _mm256_mul_ps(vt, vs);
178 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
179
180 // Denominator of the sigmoid fraction: 1.0 + exp(z)
181 const __m256 vd = _mm256_add_ps(ve, vone);
182
183 // Use Newton-Raphson method to compute reciprocal of denominator.
184 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
185 // Thus the reciprocal of the denominator never overflows.
186 __m256 vr = _mm256_rcp_ps(vd);
187 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
188 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
189
190 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
191 __m256 vf = _mm256_mul_ps(ve, vr);
192
193 // For inputs below denormal cutoff, replace output with +0.0f.
194 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
195 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
196
197 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
198 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
199
200 _mm256_storeu_ps(y, vf);
201 y += 8;
202 }
203 if XNN_UNLIKELY(n != 0) {
204 assert(n >= 1 * sizeof(float));
205 assert(n <= 7 * sizeof(float));
206 __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
207
208 const __m256 vx = _mm256_maskload_ps(x, vmask);
209
210 // General structure of the algorithm:
211 // / exp(x) / (1 + exp(x)) if x <= 0
212 // f[x] :=
213 // \ 1 - f[-x] if x >= 0
214 //
215 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
216 // then replace result with 1 - f[z] if x >= 0.
217 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
218
219 // Compute reduced argument n := round(z / log(2)).
220 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
221 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
222 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
223 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
224 // the algorithm.
225 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
226
227 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
228 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
229 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
230
231 // Subtract the large number back to get final n := round(z / log(2)).
232 vn = _mm256_sub_ps(vn, vmagic_bias);
233
234 // Compute reduced argument t := z - n * log(2).
235 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
236
237 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
238 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
239 vp = _mm256_fmadd_ps(vp, vt, vc3);
240 vp = _mm256_fmadd_ps(vp, vt, vc2);
241 vp = _mm256_fmadd_ps(vp, vt, vc1);
242
243 // Reconstruct the exp(z) value:
244 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
245 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
246 // = s + (t * s) * p
247 vt = _mm256_mul_ps(vt, vs);
248 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
249
250 // Denominator of the sigmoid fraction: 1.0 + exp(z)
251 const __m256 vd = _mm256_add_ps(ve, vone);
252
253 // Use Newton-Raphson method to compute reciprocal of denominator.
254 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
255 // Thus the reciprocal of the denominator never overflows.
256 __m256 vr = _mm256_rcp_ps(vd);
257 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
258 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
259
260 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
261 __m256 vf = _mm256_mul_ps(ve, vr);
262
263 // For inputs below denormal cutoff, replace output with +0.0f.
264 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
265 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
266
267 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
268 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
269
270 // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
271 __m128 vf_lo = _mm256_castps256_ps128(vf);
272 if (n & (4 * sizeof(float))) {
273 _mm_storeu_ps(y, vf_lo);
274 vf_lo = _mm256_extractf128_ps(vf, 1);
275 y += 4;
276 }
277 if (n & (2 * sizeof(float))) {
278 _mm_storel_pi((__m64*) y, vf_lo);
279 vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
280 y += 2;
281 }
282 if (n & (1 * sizeof(float))) {
283 _mm_store_ss(y, vf_lo);
284 }
285 }
286 }
287