• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29   // The smallest x for which sigmoidf(x) is normalized.
30   // This number is also the smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vone = _mm256_set1_ps(1.0f);
35   const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36 
37   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42 
43   for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
44     const __m256 vx0 = _mm256_loadu_ps(x);
45     const __m256 vx1 = _mm256_loadu_ps(x + 8);
46     x += 16;
47 
48     // General structure of the algorithm:
49     //           / exp(x) / (1 + exp(x)) if x <= 0
50     //   f[x] :=
51     //           \ 1 - f[-x] if x >= 0
52     //
53     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
54     // then replace result with 1 - f[z] if x >= 0.
55     const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
56     const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
57 
58     // Compute reduced argument n := round(z / log(2)).
59     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
60     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
61     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
62     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
63     // the algorithm.
64     __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
65     __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
66 
67     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
68     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
69     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
70     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
71 
72     // Subtract the large number back to get final n := round(z / log(2)).
73     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
74     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
75 
76     // Compute reduced argument t := z - n * log(2).
77     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
78     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
79 
80     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
81     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
82     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
83 
84     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
85     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
86 
87     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
88     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
89 
90     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
91     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
92 
93     // Reconstruct the exp(z) value:
94     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
95     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
96     //     = s + (t * s) * p
97     vt0 = _mm256_mul_ps(vt0, vs0);
98     vt1 = _mm256_mul_ps(vt1, vs1);
99 
100     const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
101     const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
102 
103     // Denominator of the sigmoid fraction: 1.0 + exp(z)
104     const __m256 vd0 = _mm256_add_ps(ve0, vone);
105     const __m256 vd1 = _mm256_add_ps(ve1, vone);
106 
107     // Use Newton-Raphson method to compute reciprocal of denominator.
108     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
109     // Thus the reciprocal of the denominator never overflows.
110     __m256 vr0 = _mm256_rcp_ps(vd0);
111     __m256 vr1 = _mm256_rcp_ps(vd1);
112 
113     vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
114     vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
115 
116     vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
117     vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
118 
119     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
120     __m256 vf0 = _mm256_mul_ps(ve0, vr0);
121     __m256 vf1 = _mm256_mul_ps(ve1, vr1);
122 
123     // For inputs below denormal cutoff, replace output with +0.0f.
124     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
125     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
126     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
127 
128     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
129     vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
130     vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
131 
132     _mm256_storeu_ps(y, vf0);
133     _mm256_storeu_ps(y + 8, vf1);
134     y += 16;
135   }
136   for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
137     const __m256 vx = _mm256_loadu_ps(x);
138     x += 8;
139 
140     // General structure of the algorithm:
141     //           / exp(x) / (1 + exp(x)) if x <= 0
142     //   f[x] :=
143     //           \ 1 - f[-x] if x >= 0
144     //
145     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
146     // then replace result with 1 - f[z] if x >= 0.
147     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
148 
149     // Compute reduced argument n := round(z / log(2)).
150     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
151     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
152     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
153     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
154     // the algorithm.
155     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
156 
157     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
158     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
159     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
160 
161     // Subtract the large number back to get final n := round(z / log(2)).
162     vn = _mm256_sub_ps(vn, vmagic_bias);
163 
164     // Compute reduced argument t := z - n * log(2).
165     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
166 
167     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
168     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
169     vp = _mm256_fmadd_ps(vp, vt, vc3);
170     vp = _mm256_fmadd_ps(vp, vt, vc2);
171     vp = _mm256_fmadd_ps(vp, vt, vc1);
172 
173     // Reconstruct the exp(z) value:
174     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
175     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
176     //     = s + (t * s) * p
177     vt = _mm256_mul_ps(vt, vs);
178     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
179 
180     // Denominator of the sigmoid fraction: 1.0 + exp(z)
181     const __m256 vd = _mm256_add_ps(ve, vone);
182 
183     // Use Newton-Raphson method to compute reciprocal of denominator.
184     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
185     // Thus the reciprocal of the denominator never overflows.
186     __m256 vr = _mm256_rcp_ps(vd);
187     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
188     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
189 
190     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
191     __m256 vf = _mm256_mul_ps(ve, vr);
192 
193     // For inputs below denormal cutoff, replace output with +0.0f.
194     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
195     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
196 
197     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
198     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
199 
200     _mm256_storeu_ps(y, vf);
201     y += 8;
202   }
203   if XNN_UNLIKELY(n != 0) {
204     assert(n >= 1 * sizeof(float));
205     assert(n <= 7 * sizeof(float));
206     __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
207 
208     const __m256 vx = _mm256_maskload_ps(x, vmask);
209 
210     // General structure of the algorithm:
211     //           / exp(x) / (1 + exp(x)) if x <= 0
212     //   f[x] :=
213     //           \ 1 - f[-x] if x >= 0
214     //
215     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
216     // then replace result with 1 - f[z] if x >= 0.
217     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
218 
219     // Compute reduced argument n := round(z / log(2)).
220     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
221     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
222     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
223     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
224     // the algorithm.
225     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
226 
227     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
228     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
229     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
230 
231     // Subtract the large number back to get final n := round(z / log(2)).
232     vn = _mm256_sub_ps(vn, vmagic_bias);
233 
234     // Compute reduced argument t := z - n * log(2).
235     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
236 
237     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
238     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
239     vp = _mm256_fmadd_ps(vp, vt, vc3);
240     vp = _mm256_fmadd_ps(vp, vt, vc2);
241     vp = _mm256_fmadd_ps(vp, vt, vc1);
242 
243     // Reconstruct the exp(z) value:
244     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
245     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
246     //     = s + (t * s) * p
247     vt = _mm256_mul_ps(vt, vs);
248     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
249 
250     // Denominator of the sigmoid fraction: 1.0 + exp(z)
251     const __m256 vd = _mm256_add_ps(ve, vone);
252 
253     // Use Newton-Raphson method to compute reciprocal of denominator.
254     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
255     // Thus the reciprocal of the denominator never overflows.
256     __m256 vr = _mm256_rcp_ps(vd);
257     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
258     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
259 
260     // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
261     __m256 vf = _mm256_mul_ps(ve, vr);
262 
263     // For inputs below denormal cutoff, replace output with +0.0f.
264     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
265     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
266 
267     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
268     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
269 
270     // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
271     __m128 vf_lo = _mm256_castps256_ps128(vf);
272     if (n & (4 * sizeof(float))) {
273       _mm_storeu_ps(y, vf_lo);
274       vf_lo = _mm256_extractf128_ps(vf, 1);
275       y += 4;
276     }
277     if (n & (2 * sizeof(float))) {
278       _mm_storel_pi((__m64*) y, vf_lo);
279       vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
280       y += 2;
281     }
282     if (n & (1 * sizeof(float))) {
283       _mm_store_ss(y, vf_lo);
284     }
285   }
286 }
287