1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/avx2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <immintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19
xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29 // The smallest x for which sigmoidf(x) is normalized.
30 // This number is also the smallest x for which expf(x) is normalized.
31 const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
32 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33 const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
34 const __m256 vone = _mm256_set1_ps(1.0f);
35 const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
36
37 const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
38 const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
39 const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
40 const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
41 const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
42
43 for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
44 const __m256 vx0 = _mm256_loadu_ps(x);
45 const __m256 vx1 = _mm256_loadu_ps(x + 8);
46 const __m256 vx2 = _mm256_loadu_ps(x + 16);
47 x += 24;
48
49 // General structure of the algorithm:
50 // / exp(x) / (1 + exp(x)) if x <= 0
51 // f[x] :=
52 // \ 1 - f[-x] if x >= 0
53 //
54 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
55 // then replace result with 1 - f[z] if x >= 0.
56 const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
57 const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
58 const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
59
60 // Compute reduced argument n := round(z / log(2)).
61 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
62 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
63 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
64 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
65 // the algorithm.
66 __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
67 __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
68 __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
69
70 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
71 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
72 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
73 const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
74 const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
75
76 // Subtract the large number back to get final n := round(z / log(2)).
77 vn0 = _mm256_sub_ps(vn0, vmagic_bias);
78 vn1 = _mm256_sub_ps(vn1, vmagic_bias);
79 vn2 = _mm256_sub_ps(vn2, vmagic_bias);
80
81 // Compute reduced argument t := z - n * log(2).
82 __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
83 __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
84 __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
85
86 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
87 __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
88 __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
89 __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
90
91 vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
92 vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
93 vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
94
95 vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
96 vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
97 vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
98
99 vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
100 vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
101 vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
102
103 // Reconstruct the exp(z) value:
104 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
105 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
106 // = s + (t * s) * p
107 vt0 = _mm256_mul_ps(vt0, vs0);
108 vt1 = _mm256_mul_ps(vt1, vs1);
109 vt2 = _mm256_mul_ps(vt2, vs2);
110
111 const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
112 const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
113 const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
114
115 // Denominator of the sigmoid fraction: 1.0 + exp(z)
116 const __m256 vd0 = _mm256_add_ps(ve0, vone);
117 const __m256 vd1 = _mm256_add_ps(ve1, vone);
118 const __m256 vd2 = _mm256_add_ps(ve2, vone);
119
120 // Use Newton-Raphson method to compute reciprocal of denominator.
121 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
122 // Thus the reciprocal of the denominator never overflows.
123 __m256 vr0 = _mm256_rcp_ps(vd0);
124 __m256 vr1 = _mm256_rcp_ps(vd1);
125 __m256 vr2 = _mm256_rcp_ps(vd2);
126
127 vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
128 vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
129 vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
130
131 vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
132 vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
133 vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
134
135 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
136 __m256 vf0 = _mm256_mul_ps(ve0, vr0);
137 __m256 vf1 = _mm256_mul_ps(ve1, vr1);
138 __m256 vf2 = _mm256_mul_ps(ve2, vr2);
139
140 // For inputs below denormal cutoff, replace output with +0.0f.
141 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
142 vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
143 vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
144 vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
145
146 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
147 vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
148 vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
149 vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
150
151 _mm256_storeu_ps(y, vf0);
152 _mm256_storeu_ps(y + 8, vf1);
153 _mm256_storeu_ps(y + 16, vf2);
154 y += 24;
155 }
156 for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
157 const __m256 vx = _mm256_loadu_ps(x);
158 x += 8;
159
160 // General structure of the algorithm:
161 // / exp(x) / (1 + exp(x)) if x <= 0
162 // f[x] :=
163 // \ 1 - f[-x] if x >= 0
164 //
165 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
166 // then replace result with 1 - f[z] if x >= 0.
167 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
168
169 // Compute reduced argument n := round(z / log(2)).
170 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
171 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
172 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
173 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
174 // the algorithm.
175 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
176
177 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
178 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
179 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
180
181 // Subtract the large number back to get final n := round(z / log(2)).
182 vn = _mm256_sub_ps(vn, vmagic_bias);
183
184 // Compute reduced argument t := z - n * log(2).
185 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
186
187 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
188 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
189 vp = _mm256_fmadd_ps(vp, vt, vc3);
190 vp = _mm256_fmadd_ps(vp, vt, vc2);
191 vp = _mm256_fmadd_ps(vp, vt, vc1);
192
193 // Reconstruct the exp(z) value:
194 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
195 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
196 // = s + (t * s) * p
197 vt = _mm256_mul_ps(vt, vs);
198 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
199
200 // Denominator of the sigmoid fraction: 1.0 + exp(z)
201 const __m256 vd = _mm256_add_ps(ve, vone);
202
203 // Use Newton-Raphson method to compute reciprocal of denominator.
204 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
205 // Thus the reciprocal of the denominator never overflows.
206 __m256 vr = _mm256_rcp_ps(vd);
207 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
208 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
209
210 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
211 __m256 vf = _mm256_mul_ps(ve, vr);
212
213 // For inputs below denormal cutoff, replace output with +0.0f.
214 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
215 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
216
217 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
218 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
219
220 _mm256_storeu_ps(y, vf);
221 y += 8;
222 }
223 if XNN_UNLIKELY(n != 0) {
224 assert(n >= 1 * sizeof(float));
225 assert(n <= 7 * sizeof(float));
226 __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
227
228 const __m256 vx = _mm256_maskload_ps(x, vmask);
229
230 // General structure of the algorithm:
231 // / exp(x) / (1 + exp(x)) if x <= 0
232 // f[x] :=
233 // \ 1 - f[-x] if x >= 0
234 //
235 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
236 // then replace result with 1 - f[z] if x >= 0.
237 const __m256 vz = _mm256_or_ps(vx, vsign_mask);
238
239 // Compute reduced argument n := round(z / log(2)).
240 // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
241 // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
242 // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
243 // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
244 // the algorithm.
245 __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
246
247 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
248 // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
249 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
250
251 // Subtract the large number back to get final n := round(z / log(2)).
252 vn = _mm256_sub_ps(vn, vmagic_bias);
253
254 // Compute reduced argument t := z - n * log(2).
255 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
256
257 // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
258 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
259 vp = _mm256_fmadd_ps(vp, vt, vc3);
260 vp = _mm256_fmadd_ps(vp, vt, vc2);
261 vp = _mm256_fmadd_ps(vp, vt, vc1);
262
263 // Reconstruct the exp(z) value:
264 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
265 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
266 // = s + (t * s) * p
267 vt = _mm256_mul_ps(vt, vs);
268 const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
269
270 // Denominator of the sigmoid fraction: 1.0 + exp(z)
271 const __m256 vd = _mm256_add_ps(ve, vone);
272
273 // Use Newton-Raphson method to compute reciprocal of denominator.
274 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
275 // Thus the reciprocal of the denominator never overflows.
276 __m256 vr = _mm256_rcp_ps(vd);
277 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
278 vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
279
280 // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
281 __m256 vf = _mm256_mul_ps(ve, vr);
282
283 // For inputs below denormal cutoff, replace output with +0.0f.
284 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
285 vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
286
287 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
288 vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
289
290 // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
291 __m128 vf_lo = _mm256_castps256_ps128(vf);
292 if (n & (4 * sizeof(float))) {
293 _mm_storeu_ps(y, vf_lo);
294 vf_lo = _mm256_extractf128_ps(vf, 1);
295 y += 4;
296 }
297 if (n & (2 * sizeof(float))) {
298 _mm_storel_pi((__m64*) y, vf_lo);
299 vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
300 y += 2;
301 }
302 if (n & (1 * sizeof(float))) {
303 _mm_store_ss(y, vf_lo);
304 }
305 }
306 }
307