• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut2048-p1.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_2048[2048];
19 
xnn_f32_sigmoid_ukernel__neon_rr2_lut2048_p1_nr2recps_x16(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neon_rr2_lut2048_p1_nr2recps_x16(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x2048  = vmovq_n_f32(-0x1.715476p11f);
33   // Last 18 bits are zeroes
34   const float32x4_t vln2_o2048_hi = vmovq_n_f32(0x1.600000p-12f);
35   const float32x4_t vln2_o2048_lo = vmovq_n_f32(0x1.7217F8p-19f);
36   const float32x4_t vone = vmovq_n_f32(1.0f);
37 
38   const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
39 
40   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
41 
42   for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
43     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
44     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
45     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
46     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
47 
48     // General structure of the algorithm:
49     //           / exp(x) / (1 + exp(x)) if x <= 0
50     //   f[x] :=
51     //           \ 1 - f[-x] if x >= 0
52     //
53     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
54     // then replace result with 1 - f[-z] if x >= 0.
55     const float32x4_t vz0123 = vabsq_f32(vx0123);
56     const float32x4_t vz4567 = vabsq_f32(vx4567);
57     const float32x4_t vz89AB = vabsq_f32(vx89AB);
58     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
59 
60     // Compute reduced argument n := round(-z * 2048 / log(2)).
61     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
62     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63     // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
64     // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
65     // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
66     // for such inputs at the very end of the algorithm.
67     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vz0123, vminus_log2e_x2048);
68     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vz4567, vminus_log2e_x2048);
69     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vz89AB, vminus_log2e_x2048);
70     float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x2048);
71 
72     // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
73     // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
74     // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
75     // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from the table using the 6 low bits of n, as integer. Note that the
76     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
77     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
78     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
79     //    and thus the adjusted exponent is not lower than -126.
80     //
81     // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
82     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x7FF))), 12);
83     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x7FF))), 12);
84     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x7FF))), 12);
85     const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x7FF))), 12);
86 
87     // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
88     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
89     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
90     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
91     const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
92 
93     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
94     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
95     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx01]);
96     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx23]);
97     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
98     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
99     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx45]);
100     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx67]);
101     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
102     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
103     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx89]);
104     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxAB]);
105     const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
106     const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
107     float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxCD]);
108     float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxEF]);
109 
110     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1);
111     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1);
112     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
113     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx45 >> 32)], vl45, 1);
114     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx67 >> 32)], vl67, 1);
115     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
116     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx89 >> 32)], vl89, 1);
117     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxAB >> 32)], vlAB, 1);
118     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
119     vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxCD >> 32)], vlCD, 1);
120     vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxEF >> 32)], vlEF, 1);
121     const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
122 
123     // Adjust exponent of the value l fetched from the table to get the final s value.
124     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
125     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
126     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
127     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
128 
129     // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
130     vn0123 = vsubq_f32(vn0123, vmagic_bias);
131     vn4567 = vsubq_f32(vn4567, vmagic_bias);
132     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
133     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
134 
135     // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
136     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
137     float32x4_t vt0123 = vmlaq_f32(vz0123, vn0123, vln2_o2048_hi);
138     float32x4_t vt4567 = vmlaq_f32(vz4567, vn4567, vln2_o2048_hi);
139     float32x4_t vt89AB = vmlaq_f32(vz89AB, vn89AB, vln2_o2048_hi);
140     float32x4_t vtCDEF = vmlaq_f32(vzCDEF, vnCDEF, vln2_o2048_hi);
141 
142     vt0123 = vmlaq_f32(vt0123, vn0123, vln2_o2048_lo);
143     vt4567 = vmlaq_f32(vt4567, vn4567, vln2_o2048_lo);
144     vt89AB = vmlaq_f32(vt89AB, vn89AB, vln2_o2048_lo);
145     vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vln2_o2048_lo);
146 
147     // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
148     //   P1(t) = 1 + t * c1
149     const float32x4_t vp0123 = vmulq_f32(vt0123, vc1);
150     const float32x4_t vp4567 = vmulq_f32(vt4567, vc1);
151     const float32x4_t vp89AB = vmulq_f32(vt89AB, vc1);
152     const float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc1);
153 
154     // Reconstruct the exp(-z) value:
155     //   y = s * (1 + t * c1)
156     //     = s + s * (t * c1))
157     //     = s + s * p
158     const float32x4_t vy0123 = vmlaq_f32(vs0123, vs0123, vp0123);
159     const float32x4_t vy4567 = vmlaq_f32(vs4567, vs4567, vp4567);
160     const float32x4_t vy89AB = vmlaq_f32(vs89AB, vs89AB, vp89AB);
161     const float32x4_t vyCDEF = vmlaq_f32(vsCDEF, vsCDEF, vpCDEF);
162 
163     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
164     const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
165     const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
166     const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
167     const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
168 
169     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
170     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
171     // Thus the reciprocal of the denominator never overflows.
172     float32x4_t vr0123 = vrecpeq_f32(vd0123);
173     float32x4_t vr4567 = vrecpeq_f32(vd4567);
174     float32x4_t vr89AB = vrecpeq_f32(vd89AB);
175     float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
176 
177     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
178     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
179     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
180     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
181 
182     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
183     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
184     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
185     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
186 
187     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
188     float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
189     float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
190     float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
191     float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
192 
193     // For inputs below denormal cutoff, replace output with +0.0f.
194     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
195     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
196     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
197     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
198     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
199 
200     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
201     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
202     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
203     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
204     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
205 
206     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
207     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
208     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
209     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
210 
211     vst1q_f32(y, vf0123); y += 4;
212     vst1q_f32(y, vf4567); y += 4;
213     vst1q_f32(y, vf89AB); y += 4;
214     vst1q_f32(y, vfCDEF); y += 4;
215   }
216   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
217     const float32x4_t vx = vld1q_f32(x); x += 4;
218 
219     // General structure of the algorithm:
220     //           / exp(x) / (1 + exp(x)) if x <= 0
221     //   f[x] :=
222     //           \ 1 - f[-x] if x >= 0
223     //
224     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
225     // then replace result with 1 - f[-z] if x >= 0.
226     const float32x4_t vz = vabsq_f32(vx);
227 
228     // Compute reduced argument n := round(-z * 2048 / log(2)).
229     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
230     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
231     // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
232     // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
233     // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
234     // for such inputs at the very end of the algorithm.
235     float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
236 
237     // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
238     // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
239     // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
240     // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
241     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
242     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
243     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
244     //    and thus the adjusted exponent is not lower than -126.
245     //
246     // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
247     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
248 
249     // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
250     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
251     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
252     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
253     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
254     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
255     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
256     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
257     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
258     // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
259     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
260 
261     // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
262     vn = vsubq_f32(vn, vmagic_bias);
263 
264     // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
265     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
266     float32x4_t vt = vmlaq_f32(vz, vn, vln2_o2048_hi);
267     vt = vmlaq_f32(vt, vn, vln2_o2048_lo);
268 
269     // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
270     //   P1(t) = 1 + t * c1
271     const float32x4_t vp = vmulq_f32(vt, vc1);
272 
273     // Reconstruct the exp(-z) value:
274     //   y = s * (1 + t * c1)
275     //     = s + s * (t * c1))
276     //     = s + s * p
277     const float32x4_t vy = vmlaq_f32(vs, vs, vp);
278 
279     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
280     const float32x4_t vd = vaddq_f32(vy, vone);
281 
282     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
283     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
284     // Thus the reciprocal of the denominator never overflows.
285     float32x4_t vr = vrecpeq_f32(vd);
286 
287     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
288 
289     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
290 
291     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
292     float32x4_t vf = vmulq_f32(vy, vr);
293 
294     // For inputs below denormal cutoff, replace output with +0.0f.
295     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
296     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
297 
298     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
299     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
300     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
301 
302     vst1q_f32(y, vf); y += 4;
303   }
304   if XNN_UNLIKELY(n != 0) {
305     const float32x4_t vx = vld1q_f32(x);
306 
307     // General structure of the algorithm:
308     //           / exp(x) / (1 + exp(x)) if x <= 0
309     //   f[x] :=
310     //           \ 1 - f[-x] if x >= 0
311     //
312     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
313     // then replace result with 1 - f[-z] if x >= 0.
314     const float32x4_t vz = vabsq_f32(vx);
315 
316     // Compute reduced argument n := round(-z * 2048 / log(2)).
317     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
318     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
319     // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
320     // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
321     // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
322     // for such inputs at the very end of the algorithm.
323     float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
324 
325     // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
326     // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
327     // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
328     // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
329     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
330     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
331     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
332     //    and thus the adjusted exponent is not lower than -126.
333     //
334     // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
335     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
336 
337     // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
338     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
339     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
340     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
341     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
342     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
343     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
344     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
345     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
346     // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
347     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
348 
349     // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
350     vn = vsubq_f32(vn, vmagic_bias);
351 
352     // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
353     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
354     float32x4_t vt = vmlaq_f32(vz, vn, vln2_o2048_hi);
355     vt = vmlaq_f32(vt, vn, vln2_o2048_lo);
356 
357     // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
358     //   P1(t) = 1 + t * c1
359     const float32x4_t vp = vmulq_f32(vt, vc1);
360 
361     // Reconstruct the exp(-z) value:
362     //   y = s * (1 + t * c1)
363     //     = s + s * (t * c1))
364     //     = s + s * p
365     const float32x4_t vy = vmlaq_f32(vs, vs, vp);
366 
367     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
368     const float32x4_t vd = vaddq_f32(vy, vone);
369 
370     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
371     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
372     // Thus the reciprocal of the denominator never overflows.
373     float32x4_t vr = vrecpeq_f32(vd);
374 
375     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
376 
377     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
378 
379     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
380     float32x4_t vf = vmulq_f32(vy, vr);
381 
382     // For inputs below denormal cutoff, replace output with +0.0f.
383     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
384     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
385 
386     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
387     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
388     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
389 
390     float32x2_t vf_lo = vget_low_f32(vf);
391     if (n & (2 * sizeof(float))) {
392       vst1_f32(y, vf_lo); y += 2;
393       vf_lo = vget_high_f32(vf);
394     }
395     if (n & (1 * sizeof(float))) {
396       vst1_lane_f32(y, vf_lo, 0);
397     }
398   }
399 }
400