1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut2048-p1.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_2048[2048];
19
xnn_f32_sigmoid_ukernel__neon_rr2_lut2048_p1_nr2recps_x16(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neon_rr2_lut2048_p1_nr2recps_x16(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x2048 = vmovq_n_f32(-0x1.715476p11f);
33 // Last 18 bits are zeroes
34 const float32x4_t vln2_o2048_hi = vmovq_n_f32(0x1.600000p-12f);
35 const float32x4_t vln2_o2048_lo = vmovq_n_f32(0x1.7217F8p-19f);
36 const float32x4_t vone = vmovq_n_f32(1.0f);
37
38 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
39
40 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
41
42 for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
43 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
44 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
45 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
46 const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
47
48 // General structure of the algorithm:
49 // / exp(x) / (1 + exp(x)) if x <= 0
50 // f[x] :=
51 // \ 1 - f[-x] if x >= 0
52 //
53 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
54 // then replace result with 1 - f[-z] if x >= 0.
55 const float32x4_t vz0123 = vabsq_f32(vx0123);
56 const float32x4_t vz4567 = vabsq_f32(vx4567);
57 const float32x4_t vz89AB = vabsq_f32(vx89AB);
58 const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
59
60 // Compute reduced argument n := round(-z * 2048 / log(2)).
61 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
62 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
64 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
65 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
66 // for such inputs at the very end of the algorithm.
67 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vz0123, vminus_log2e_x2048);
68 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vz4567, vminus_log2e_x2048);
69 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vz89AB, vminus_log2e_x2048);
70 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x2048);
71
72 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
73 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
74 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
75 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from the table using the 6 low bits of n, as integer. Note that the
76 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
77 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
78 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
79 // and thus the adjusted exponent is not lower than -126.
80 //
81 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
82 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x7FF))), 12);
83 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x7FF))), 12);
84 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x7FF))), 12);
85 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x7FF))), 12);
86
87 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
88 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
89 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
90 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
91 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
92
93 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
94 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
95 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx01]);
96 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx23]);
97 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
98 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
99 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx45]);
100 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx67]);
101 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
102 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
103 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx89]);
104 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxAB]);
105 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
106 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
107 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxCD]);
108 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxEF]);
109
110 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1);
111 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1);
112 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
113 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx45 >> 32)], vl45, 1);
114 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx67 >> 32)], vl67, 1);
115 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
116 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx89 >> 32)], vl89, 1);
117 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxAB >> 32)], vlAB, 1);
118 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
119 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxCD >> 32)], vlCD, 1);
120 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxEF >> 32)], vlEF, 1);
121 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
122
123 // Adjust exponent of the value l fetched from the table to get the final s value.
124 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
125 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
126 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
127 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
128
129 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
130 vn0123 = vsubq_f32(vn0123, vmagic_bias);
131 vn4567 = vsubq_f32(vn4567, vmagic_bias);
132 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
133 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
134
135 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
136 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
137 float32x4_t vt0123 = vmlaq_f32(vz0123, vn0123, vln2_o2048_hi);
138 float32x4_t vt4567 = vmlaq_f32(vz4567, vn4567, vln2_o2048_hi);
139 float32x4_t vt89AB = vmlaq_f32(vz89AB, vn89AB, vln2_o2048_hi);
140 float32x4_t vtCDEF = vmlaq_f32(vzCDEF, vnCDEF, vln2_o2048_hi);
141
142 vt0123 = vmlaq_f32(vt0123, vn0123, vln2_o2048_lo);
143 vt4567 = vmlaq_f32(vt4567, vn4567, vln2_o2048_lo);
144 vt89AB = vmlaq_f32(vt89AB, vn89AB, vln2_o2048_lo);
145 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vln2_o2048_lo);
146
147 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
148 // P1(t) = 1 + t * c1
149 const float32x4_t vp0123 = vmulq_f32(vt0123, vc1);
150 const float32x4_t vp4567 = vmulq_f32(vt4567, vc1);
151 const float32x4_t vp89AB = vmulq_f32(vt89AB, vc1);
152 const float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc1);
153
154 // Reconstruct the exp(-z) value:
155 // y = s * (1 + t * c1)
156 // = s + s * (t * c1))
157 // = s + s * p
158 const float32x4_t vy0123 = vmlaq_f32(vs0123, vs0123, vp0123);
159 const float32x4_t vy4567 = vmlaq_f32(vs4567, vs4567, vp4567);
160 const float32x4_t vy89AB = vmlaq_f32(vs89AB, vs89AB, vp89AB);
161 const float32x4_t vyCDEF = vmlaq_f32(vsCDEF, vsCDEF, vpCDEF);
162
163 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
164 const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
165 const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
166 const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
167 const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
168
169 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
170 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
171 // Thus the reciprocal of the denominator never overflows.
172 float32x4_t vr0123 = vrecpeq_f32(vd0123);
173 float32x4_t vr4567 = vrecpeq_f32(vd4567);
174 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
175 float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
176
177 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
178 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
179 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
180 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
181
182 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
183 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
184 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
185 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
186
187 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
188 float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
189 float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
190 float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
191 float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
192
193 // For inputs below denormal cutoff, replace output with +0.0f.
194 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
195 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
196 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
197 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
198 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
199
200 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
201 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
202 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
203 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
204 const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
205
206 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
207 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
208 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
209 vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
210
211 vst1q_f32(y, vf0123); y += 4;
212 vst1q_f32(y, vf4567); y += 4;
213 vst1q_f32(y, vf89AB); y += 4;
214 vst1q_f32(y, vfCDEF); y += 4;
215 }
216 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
217 const float32x4_t vx = vld1q_f32(x); x += 4;
218
219 // General structure of the algorithm:
220 // / exp(x) / (1 + exp(x)) if x <= 0
221 // f[x] :=
222 // \ 1 - f[-x] if x >= 0
223 //
224 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
225 // then replace result with 1 - f[-z] if x >= 0.
226 const float32x4_t vz = vabsq_f32(vx);
227
228 // Compute reduced argument n := round(-z * 2048 / log(2)).
229 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
230 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
231 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
232 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
233 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
234 // for such inputs at the very end of the algorithm.
235 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
236
237 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
238 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
239 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
240 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
241 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
242 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
243 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
244 // and thus the adjusted exponent is not lower than -126.
245 //
246 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
247 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
248
249 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
250 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
251 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
252 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
253 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
254 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
255 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
256 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
257 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
258 // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
259 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
260
261 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
262 vn = vsubq_f32(vn, vmagic_bias);
263
264 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
265 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
266 float32x4_t vt = vmlaq_f32(vz, vn, vln2_o2048_hi);
267 vt = vmlaq_f32(vt, vn, vln2_o2048_lo);
268
269 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
270 // P1(t) = 1 + t * c1
271 const float32x4_t vp = vmulq_f32(vt, vc1);
272
273 // Reconstruct the exp(-z) value:
274 // y = s * (1 + t * c1)
275 // = s + s * (t * c1))
276 // = s + s * p
277 const float32x4_t vy = vmlaq_f32(vs, vs, vp);
278
279 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
280 const float32x4_t vd = vaddq_f32(vy, vone);
281
282 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
283 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
284 // Thus the reciprocal of the denominator never overflows.
285 float32x4_t vr = vrecpeq_f32(vd);
286
287 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
288
289 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
290
291 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
292 float32x4_t vf = vmulq_f32(vy, vr);
293
294 // For inputs below denormal cutoff, replace output with +0.0f.
295 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
296 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
297
298 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
299 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
300 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
301
302 vst1q_f32(y, vf); y += 4;
303 }
304 if XNN_UNLIKELY(n != 0) {
305 const float32x4_t vx = vld1q_f32(x);
306
307 // General structure of the algorithm:
308 // / exp(x) / (1 + exp(x)) if x <= 0
309 // f[x] :=
310 // \ 1 - f[-x] if x >= 0
311 //
312 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
313 // then replace result with 1 - f[-z] if x >= 0.
314 const float32x4_t vz = vabsq_f32(vx);
315
316 // Compute reduced argument n := round(-z * 2048 / log(2)).
317 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
318 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
319 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
320 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
321 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
322 // for such inputs at the very end of the algorithm.
323 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
324
325 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
326 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
327 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
328 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
329 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
330 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
331 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
332 // and thus the adjusted exponent is not lower than -126.
333 //
334 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
335 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
336
337 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
338 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
339 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
340 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
341 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
342 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
343 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
344 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
345 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
346 // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
347 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
348
349 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
350 vn = vsubq_f32(vn, vmagic_bias);
351
352 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
353 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
354 float32x4_t vt = vmlaq_f32(vz, vn, vln2_o2048_hi);
355 vt = vmlaq_f32(vt, vn, vln2_o2048_lo);
356
357 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
358 // P1(t) = 1 + t * c1
359 const float32x4_t vp = vmulq_f32(vt, vc1);
360
361 // Reconstruct the exp(-z) value:
362 // y = s * (1 + t * c1)
363 // = s + s * (t * c1))
364 // = s + s * p
365 const float32x4_t vy = vmlaq_f32(vs, vs, vp);
366
367 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
368 const float32x4_t vd = vaddq_f32(vy, vone);
369
370 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
371 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
372 // Thus the reciprocal of the denominator never overflows.
373 float32x4_t vr = vrecpeq_f32(vd);
374
375 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
376
377 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
378
379 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
380 float32x4_t vf = vmulq_f32(vy, vr);
381
382 // For inputs below denormal cutoff, replace output with +0.0f.
383 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
384 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
385
386 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
387 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
388 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
389
390 float32x2_t vf_lo = vget_low_f32(vf);
391 if (n & (2 * sizeof(float))) {
392 vst1_f32(y, vf_lo); y += 2;
393 vf_lo = vget_high_f32(vf);
394 }
395 if (n & (1 * sizeof(float))) {
396 vst1_lane_f32(y, vf_lo, 0);
397 }
398 }
399 }
400