1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut2048-p1.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_2048[2048];
19
xnn_f32_sigmoid_ukernel__neon_rr2_lut2048_p1_nr2recps_x24(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neon_rr2_lut2048_p1_nr2recps_x24(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x2048 = vmovq_n_f32(-0x1.715476p11f);
33 // Last 18 bits are zeroes
34 const float32x4_t vln2_o2048_hi = vmovq_n_f32(0x1.600000p-12f);
35 const float32x4_t vln2_o2048_lo = vmovq_n_f32(0x1.7217F8p-19f);
36 const float32x4_t vone = vmovq_n_f32(1.0f);
37
38 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
39
40 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
41
42 for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
43 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
44 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
45 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
46 const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
47 const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
48 const float32x4_t vxKLMN = vld1q_f32(x); x += 4;
49
50 // General structure of the algorithm:
51 // / exp(x) / (1 + exp(x)) if x <= 0
52 // f[x] :=
53 // \ 1 - f[-x] if x >= 0
54 //
55 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
56 // then replace result with 1 - f[-z] if x >= 0.
57 const float32x4_t vz0123 = vabsq_f32(vx0123);
58 const float32x4_t vz4567 = vabsq_f32(vx4567);
59 const float32x4_t vz89AB = vabsq_f32(vx89AB);
60 const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
61 const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
62 const float32x4_t vzKLMN = vabsq_f32(vxKLMN);
63
64 // Compute reduced argument n := round(-z * 2048 / log(2)).
65 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
66 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
67 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
68 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
69 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
70 // for such inputs at the very end of the algorithm.
71 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vz0123, vminus_log2e_x2048);
72 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vz4567, vminus_log2e_x2048);
73 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vz89AB, vminus_log2e_x2048);
74 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x2048);
75 float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vzGHIJ, vminus_log2e_x2048);
76 float32x4_t vnKLMN = vmlaq_f32(vmagic_bias, vzKLMN, vminus_log2e_x2048);
77
78 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
79 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
80 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
81 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from the table using the 6 low bits of n, as integer. Note that the
82 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
83 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
84 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
85 // and thus the adjusted exponent is not lower than -126.
86 //
87 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
88 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x7FF))), 12);
89 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x7FF))), 12);
90 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x7FF))), 12);
91 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x7FF))), 12);
92 const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x7FF))), 12);
93 const int32x4_t veKLMN = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnKLMN), vmovq_n_s32(INT32_C(0x7FF))), 12);
94
95 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
96 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
97 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
98 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
99 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
100 const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
101 const uint64x2_t vidxKLMN = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnKLMN), vindex_mask));
102
103 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
104 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
105 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx01]);
106 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx23]);
107 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
108 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
109 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx45]);
110 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx67]);
111 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
112 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
113 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx89]);
114 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxAB]);
115 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
116 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
117 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxCD]);
118 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxEF]);
119 const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
120 const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
121 float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxGH]);
122 float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxIJ]);
123 const uint64_t vidxKL = vgetq_lane_u64(vidxKLMN, 0);
124 const uint64_t vidxMN = vgetq_lane_u64(vidxKLMN, 1);
125 float32x2_t vlKL = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxKL]);
126 float32x2_t vlMN = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxMN]);
127
128 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1);
129 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1);
130 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
131 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx45 >> 32)], vl45, 1);
132 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx67 >> 32)], vl67, 1);
133 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
134 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx89 >> 32)], vl89, 1);
135 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxAB >> 32)], vlAB, 1);
136 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
137 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxCD >> 32)], vlCD, 1);
138 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxEF >> 32)], vlEF, 1);
139 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
140 vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxGH >> 32)], vlGH, 1);
141 vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
142 const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
143 vlKL = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxKL >> 32)], vlKL, 1);
144 vlMN = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxMN >> 32)], vlMN, 1);
145 const float32x4_t vlKLMN = vcombine_f32(vlKL, vlMN);
146
147 // Adjust exponent of the value l fetched from the table to get the final s value.
148 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
149 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
150 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
151 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
152 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
153 const float32x4_t vsKLMN = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlKLMN), veKLMN));
154
155 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
156 vn0123 = vsubq_f32(vn0123, vmagic_bias);
157 vn4567 = vsubq_f32(vn4567, vmagic_bias);
158 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
159 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
160 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
161 vnKLMN = vsubq_f32(vnKLMN, vmagic_bias);
162
163 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
164 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
165 float32x4_t vt0123 = vmlaq_f32(vz0123, vn0123, vln2_o2048_hi);
166 float32x4_t vt4567 = vmlaq_f32(vz4567, vn4567, vln2_o2048_hi);
167 float32x4_t vt89AB = vmlaq_f32(vz89AB, vn89AB, vln2_o2048_hi);
168 float32x4_t vtCDEF = vmlaq_f32(vzCDEF, vnCDEF, vln2_o2048_hi);
169 float32x4_t vtGHIJ = vmlaq_f32(vzGHIJ, vnGHIJ, vln2_o2048_hi);
170 float32x4_t vtKLMN = vmlaq_f32(vzKLMN, vnKLMN, vln2_o2048_hi);
171
172 vt0123 = vmlaq_f32(vt0123, vn0123, vln2_o2048_lo);
173 vt4567 = vmlaq_f32(vt4567, vn4567, vln2_o2048_lo);
174 vt89AB = vmlaq_f32(vt89AB, vn89AB, vln2_o2048_lo);
175 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vln2_o2048_lo);
176 vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vln2_o2048_lo);
177 vtKLMN = vmlaq_f32(vtKLMN, vnKLMN, vln2_o2048_lo);
178
179 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
180 // P1(t) = 1 + t * c1
181 const float32x4_t vp0123 = vmulq_f32(vt0123, vc1);
182 const float32x4_t vp4567 = vmulq_f32(vt4567, vc1);
183 const float32x4_t vp89AB = vmulq_f32(vt89AB, vc1);
184 const float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc1);
185 const float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc1);
186 const float32x4_t vpKLMN = vmulq_f32(vtKLMN, vc1);
187
188 // Reconstruct the exp(-z) value:
189 // y = s * (1 + t * c1)
190 // = s + s * (t * c1))
191 // = s + s * p
192 const float32x4_t vy0123 = vmlaq_f32(vs0123, vs0123, vp0123);
193 const float32x4_t vy4567 = vmlaq_f32(vs4567, vs4567, vp4567);
194 const float32x4_t vy89AB = vmlaq_f32(vs89AB, vs89AB, vp89AB);
195 const float32x4_t vyCDEF = vmlaq_f32(vsCDEF, vsCDEF, vpCDEF);
196 const float32x4_t vyGHIJ = vmlaq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
197 const float32x4_t vyKLMN = vmlaq_f32(vsKLMN, vsKLMN, vpKLMN);
198
199 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
200 const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
201 const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
202 const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
203 const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
204 const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone);
205 const float32x4_t vdKLMN = vaddq_f32(vyKLMN, vone);
206
207 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
208 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
209 // Thus the reciprocal of the denominator never overflows.
210 float32x4_t vr0123 = vrecpeq_f32(vd0123);
211 float32x4_t vr4567 = vrecpeq_f32(vd4567);
212 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
213 float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
214 float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
215 float32x4_t vrKLMN = vrecpeq_f32(vdKLMN);
216
217 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
218 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
219 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
220 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
221 vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
222 vrKLMN = vmulq_f32(vrKLMN, vrecpsq_f32(vrKLMN, vdKLMN));
223
224 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
225 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
226 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
227 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
228 vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
229 vrKLMN = vmulq_f32(vrKLMN, vrecpsq_f32(vrKLMN, vdKLMN));
230
231 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
232 float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
233 float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
234 float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
235 float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
236 float32x4_t vfGHIJ = vmulq_f32(vyGHIJ, vrGHIJ);
237 float32x4_t vfKLMN = vmulq_f32(vyKLMN, vrKLMN);
238
239 // For inputs below denormal cutoff, replace output with +0.0f.
240 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
241 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
242 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
243 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
244 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
245 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
246 vfKLMN = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfKLMN), vcagtq_f32(vxKLMN, vdenorm_cutoff)));
247
248 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
249 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
250 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
251 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
252 const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
253 const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
254 const uint32x4_t vmKLMN = vcltq_f32(vxKLMN, vmovq_n_f32(0.0f));
255
256 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
257 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
258 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
259 vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
260 vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
261 vfKLMN = vbslq_f32(vmKLMN, vfKLMN, vsubq_f32(vone, vfKLMN));
262
263 vst1q_f32(y, vf0123); y += 4;
264 vst1q_f32(y, vf4567); y += 4;
265 vst1q_f32(y, vf89AB); y += 4;
266 vst1q_f32(y, vfCDEF); y += 4;
267 vst1q_f32(y, vfGHIJ); y += 4;
268 vst1q_f32(y, vfKLMN); y += 4;
269 }
270 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
271 const float32x4_t vx = vld1q_f32(x); x += 4;
272
273 // General structure of the algorithm:
274 // / exp(x) / (1 + exp(x)) if x <= 0
275 // f[x] :=
276 // \ 1 - f[-x] if x >= 0
277 //
278 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
279 // then replace result with 1 - f[-z] if x >= 0.
280 const float32x4_t vz = vabsq_f32(vx);
281
282 // Compute reduced argument n := round(-z * 2048 / log(2)).
283 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
284 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
285 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
286 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
287 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
288 // for such inputs at the very end of the algorithm.
289 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
290
291 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
292 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
293 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
294 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
295 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
296 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
297 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
298 // and thus the adjusted exponent is not lower than -126.
299 //
300 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
301 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
302
303 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
304 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
305 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
306 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
307 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
308 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
309 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
310 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
311 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
312 // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
313 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
314
315 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
316 vn = vsubq_f32(vn, vmagic_bias);
317
318 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
319 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
320 float32x4_t vt = vmlaq_f32(vz, vn, vln2_o2048_hi);
321 vt = vmlaq_f32(vt, vn, vln2_o2048_lo);
322
323 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
324 // P1(t) = 1 + t * c1
325 const float32x4_t vp = vmulq_f32(vt, vc1);
326
327 // Reconstruct the exp(-z) value:
328 // y = s * (1 + t * c1)
329 // = s + s * (t * c1))
330 // = s + s * p
331 const float32x4_t vy = vmlaq_f32(vs, vs, vp);
332
333 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
334 const float32x4_t vd = vaddq_f32(vy, vone);
335
336 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
337 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
338 // Thus the reciprocal of the denominator never overflows.
339 float32x4_t vr = vrecpeq_f32(vd);
340
341 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
342
343 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
344
345 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
346 float32x4_t vf = vmulq_f32(vy, vr);
347
348 // For inputs below denormal cutoff, replace output with +0.0f.
349 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
350 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
351
352 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
353 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
354 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
355
356 vst1q_f32(y, vf); y += 4;
357 }
358 if XNN_UNLIKELY(n != 0) {
359 const float32x4_t vx = vld1q_f32(x);
360
361 // General structure of the algorithm:
362 // / exp(x) / (1 + exp(x)) if x <= 0
363 // f[x] :=
364 // \ 1 - f[-x] if x >= 0
365 //
366 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
367 // then replace result with 1 - f[-z] if x >= 0.
368 const float32x4_t vz = vabsq_f32(vx);
369
370 // Compute reduced argument n := round(-z * 2048 / log(2)).
371 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
372 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
373 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
374 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
375 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
376 // for such inputs at the very end of the algorithm.
377 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
378
379 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
380 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
381 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
382 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
383 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
384 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
385 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
386 // and thus the adjusted exponent is not lower than -126.
387 //
388 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
389 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
390
391 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
392 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
393 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
394 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
395 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
396 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
397 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
398 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
399 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
400 // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
401 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
402
403 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
404 vn = vsubq_f32(vn, vmagic_bias);
405
406 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
407 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
408 float32x4_t vt = vmlaq_f32(vz, vn, vln2_o2048_hi);
409 vt = vmlaq_f32(vt, vn, vln2_o2048_lo);
410
411 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
412 // P1(t) = 1 + t * c1
413 const float32x4_t vp = vmulq_f32(vt, vc1);
414
415 // Reconstruct the exp(-z) value:
416 // y = s * (1 + t * c1)
417 // = s + s * (t * c1))
418 // = s + s * p
419 const float32x4_t vy = vmlaq_f32(vs, vs, vp);
420
421 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
422 const float32x4_t vd = vaddq_f32(vy, vone);
423
424 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
425 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
426 // Thus the reciprocal of the denominator never overflows.
427 float32x4_t vr = vrecpeq_f32(vd);
428
429 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
430
431 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
432
433 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
434 float32x4_t vf = vmulq_f32(vy, vr);
435
436 // For inputs below denormal cutoff, replace output with +0.0f.
437 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
438 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
439
440 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
441 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
442 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
443
444 float32x2_t vf_lo = vget_low_f32(vf);
445 if (n & (2 * sizeof(float))) {
446 vst1_f32(y, vf_lo); y += 2;
447 vf_lo = vget_high_f32(vf);
448 }
449 if (n & (1 * sizeof(float))) {
450 vst1_lane_f32(y, vf_lo, 0);
451 }
452 }
453 }
454