1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x12(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x12(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33 // Last 13 bits are zeroes
34 const float32x4_t vln2_o64_hi = vmovq_n_f32(0x1.630000p-7f);
35 const float32x4_t vln2_o64_lo = vmovq_n_f32(-0x1.BD0106p-19f);
36 const float32x4_t vone = vmovq_n_f32(1.0f);
37
38 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
39
40 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
41
42 for (; n >= 12 * sizeof(float); n -= 12 * sizeof(float)) {
43 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
44 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
45 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
46
47 // General structure of the algorithm:
48 // / exp(x) / (1 + exp(x)) if x <= 0
49 // f[x] :=
50 // \ 1 - f[-x] if x >= 0
51 //
52 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
53 // then replace result with 1 - f[-z] if x >= 0.
54 const float32x4_t vz0123 = vabsq_f32(vx0123);
55 const float32x4_t vz4567 = vabsq_f32(vx4567);
56 const float32x4_t vz89AB = vabsq_f32(vx89AB);
57
58 // Compute reduced argument n := round(-z * 64 / log(2)).
59 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
60 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
62 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
63 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
64 // very end of the algorithm.
65 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
66 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
67 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
68
69 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
70 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
71 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
72 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
73 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
74 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
75 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
76 // and thus the adjusted exponent is not lower than -126.
77 //
78 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
79 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
80 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
81 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
82
83 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
84 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
85 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
86 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
87
88 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
89 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
90 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
91 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
92 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
93 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
94 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
95 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
96 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
97 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
98 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
99 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
100
101 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
102 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
103 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
104 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
105 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
106 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
107 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
108 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
109 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
110
111 // Adjust exponent of the value l fetched from the table to get the final s value.
112 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
113 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
114 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
115
116 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
117 vn0123 = vsubq_f32(vn0123, vmagic_bias);
118 vn4567 = vsubq_f32(vn4567, vmagic_bias);
119 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
120
121 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
122 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
123 float32x4_t vt0123 = vmlaq_f32(vz0123, vn0123, vln2_o64_hi);
124 float32x4_t vt4567 = vmlaq_f32(vz4567, vn4567, vln2_o64_hi);
125 float32x4_t vt89AB = vmlaq_f32(vz89AB, vn89AB, vln2_o64_hi);
126
127 vt0123 = vmlaq_f32(vt0123, vn0123, vln2_o64_lo);
128 vt4567 = vmlaq_f32(vt4567, vn4567, vln2_o64_lo);
129 vt89AB = vmlaq_f32(vt89AB, vn89AB, vln2_o64_lo);
130
131 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
132 // P1(t) = 1 + t * (-1 + t * c2)
133 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
134 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
135 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
136
137 vp0123 = vmlsq_f32(vt0123, vp0123, vt0123);
138 vp4567 = vmlsq_f32(vt4567, vp4567, vt4567);
139 vp89AB = vmlsq_f32(vt89AB, vp89AB, vt89AB);
140
141 // Reconstruct the exp(-z) value:
142 // f = s * (1 + t * (-1 + t * c2))
143 // = s * (1 - t + t * (t * c2))
144 // = s - s * (t - t * (t * c2))
145 // = s - s * p
146 const float32x4_t vy0123 = vmlsq_f32(vs0123, vs0123, vp0123);
147 const float32x4_t vy4567 = vmlsq_f32(vs4567, vs4567, vp4567);
148 const float32x4_t vy89AB = vmlsq_f32(vs89AB, vs89AB, vp89AB);
149
150 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
151 const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
152 const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
153 const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
154
155 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
156 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
157 // Thus the reciprocal of the denominator never overflows.
158 float32x4_t vr0123 = vrecpeq_f32(vd0123);
159 float32x4_t vr4567 = vrecpeq_f32(vd4567);
160 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
161
162 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
163 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
164 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
165
166 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
167 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
168 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
169
170 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
171 float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
172 float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
173 float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
174
175 // For inputs below denormal cutoff, replace output with +0.0f.
176 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
177 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
178 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
179 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
180
181 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
182 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
183 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
184 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
185
186 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
187 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
188 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
189
190 vst1q_f32(y, vf0123); y += 4;
191 vst1q_f32(y, vf4567); y += 4;
192 vst1q_f32(y, vf89AB); y += 4;
193 }
194 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
195 const float32x4_t vx = vld1q_f32(x); x += 4;
196
197 // General structure of the algorithm:
198 // / exp(x) / (1 + exp(x)) if x <= 0
199 // f[x] :=
200 // \ 1 - f[-x] if x >= 0
201 //
202 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
203 // then replace result with 1 - f[-z] if x >= 0.
204 const float32x4_t vz = vabsq_f32(vx);
205
206 // Compute reduced argument n := round(-z * 64 / log(2)).
207 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
208 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
209 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
210 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
211 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
212 // very end of the algorithm.
213 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
214
215 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
216 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
217 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
218 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
219 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
220 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
221 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
222 // and thus the adjusted exponent is not lower than -126.
223 //
224 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
225 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
226
227 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
228 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
229 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
230 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
231 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
232 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
233 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
234 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
235 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
236 // Adjust exponent of the value l fetched from the table to get the final s value.
237 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
238
239 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
240 vn = vsubq_f32(vn, vmagic_bias);
241
242 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
243 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
244 float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
245 vt = vmlaq_f32(vt, vn, vln2_o64_lo);
246
247 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
248 // P1(t) = 1 + t * (-1 + t * c2)
249 float32x4_t vp = vmulq_f32(vt, vc2);
250 vp = vmlsq_f32(vt, vp, vt);
251
252 // Reconstruct the exp(-z) value:
253 // f = s * (1 + t * (-1 + t * c2))
254 // = s * (1 - t + t * (t * c2))
255 // = s - s * (t - t * (t * c2))
256 // = s - s * p
257 const float32x4_t vy = vmlsq_f32(vs, vs, vp);
258
259 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
260 const float32x4_t vd = vaddq_f32(vy, vone);
261
262 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
263 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
264 // Thus the reciprocal of the denominator never overflows.
265 float32x4_t vr = vrecpeq_f32(vd);
266
267 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
268
269 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
270
271 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
272 float32x4_t vf = vmulq_f32(vy, vr);
273
274 // For inputs below denormal cutoff, replace output with +0.0f.
275 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
276 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
277
278 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
279 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
280 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
281
282 vst1q_f32(y, vf); y += 4;
283 }
284 if XNN_UNLIKELY(n != 0) {
285 const float32x4_t vx = vld1q_f32(x);
286
287 // General structure of the algorithm:
288 // / exp(x) / (1 + exp(x)) if x <= 0
289 // f[x] :=
290 // \ 1 - f[-x] if x >= 0
291 //
292 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
293 // then replace result with 1 - f[-z] if x >= 0.
294 const float32x4_t vz = vabsq_f32(vx);
295
296 // Compute reduced argument n := round(-z * 64 / log(2)).
297 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
298 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
299 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
300 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
301 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
302 // very end of the algorithm.
303 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
304
305 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
306 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
307 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
308 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
309 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
310 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
311 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
312 // and thus the adjusted exponent is not lower than -126.
313 //
314 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
315 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
316
317 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
318 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
319 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
320 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
321 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
322 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
323 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
324 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
325 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
326 // Adjust exponent of the value l fetched from the table to get the final s value.
327 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
328
329 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
330 vn = vsubq_f32(vn, vmagic_bias);
331
332 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
333 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
334 float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
335 vt = vmlaq_f32(vt, vn, vln2_o64_lo);
336
337 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
338 // P1(t) = 1 + t * (-1 + t * c2)
339 float32x4_t vp = vmulq_f32(vt, vc2);
340 vp = vmlsq_f32(vt, vp, vt);
341
342 // Reconstruct the exp(-z) value:
343 // f = s * (1 + t * (-1 + t * c2))
344 // = s * (1 - t + t * (t * c2))
345 // = s - s * (t - t * (t * c2))
346 // = s - s * p
347 const float32x4_t vy = vmlsq_f32(vs, vs, vp);
348
349 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
350 const float32x4_t vd = vaddq_f32(vy, vone);
351
352 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
353 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
354 // Thus the reciprocal of the denominator never overflows.
355 float32x4_t vr = vrecpeq_f32(vd);
356
357 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
358
359 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
360
361 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
362 float32x4_t vf = vmulq_f32(vy, vr);
363
364 // For inputs below denormal cutoff, replace output with +0.0f.
365 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
366 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
367
368 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
369 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
370 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
371
372 float32x2_t vf_lo = vget_low_f32(vf);
373 if (n & (2 * sizeof(float))) {
374 vst1_f32(y, vf_lo); y += 2;
375 vf_lo = vget_high_f32(vf);
376 }
377 if (n & (1 * sizeof(float))) {
378 vst1_lane_f32(y, vf_lo, 0);
379 }
380 }
381 }
382