• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x20(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x20(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33   // Last 13 bits are zeroes
34   const float32x4_t vln2_o64_hi = vmovq_n_f32(0x1.630000p-7f);
35   const float32x4_t vln2_o64_lo = vmovq_n_f32(-0x1.BD0106p-19f);
36   const float32x4_t vone = vmovq_n_f32(1.0f);
37 
38   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
39 
40   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
41 
42   for (; n >= 20 * sizeof(float); n -= 20 * sizeof(float)) {
43     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
44     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
45     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
46     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
47     const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
48 
49     // General structure of the algorithm:
50     //           / exp(x) / (1 + exp(x)) if x <= 0
51     //   f[x] :=
52     //           \ 1 - f[-x] if x >= 0
53     //
54     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
55     // then replace result with 1 - f[-z] if x >= 0.
56     const float32x4_t vz0123 = vabsq_f32(vx0123);
57     const float32x4_t vz4567 = vabsq_f32(vx4567);
58     const float32x4_t vz89AB = vabsq_f32(vx89AB);
59     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
60     const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
61 
62     // Compute reduced argument n := round(-z * 64 / log(2)).
63     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
64     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
65     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
66     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
67     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
68     // very end of the algorithm.
69     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
70     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
71     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
72     float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x64);
73     float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vzGHIJ, vminus_log2e_x64);
74 
75     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
76     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
77     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
78     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
79     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
80     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
81     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
82     //    and thus the adjusted exponent is not lower than -126.
83     //
84     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
85     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
86     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
87     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
88     const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
89     const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
90 
91     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
92     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
93     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
94     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
95     const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
96     const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
97 
98     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
99     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
100     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
101     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
102     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
103     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
104     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
105     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
106     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
107     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
108     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
109     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
110     const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
111     const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
112     float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
113     float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
114     const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
115     const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
116     float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
117     float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
118 
119     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
120     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
121     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
122     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
123     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
124     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
125     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
126     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
127     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
128     vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
129     vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
130     const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
131     vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
132     vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
133     const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
134 
135     // Adjust exponent of the value l fetched from the table to get the final s value.
136     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
137     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
138     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
139     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
140     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
141 
142     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
143     vn0123 = vsubq_f32(vn0123, vmagic_bias);
144     vn4567 = vsubq_f32(vn4567, vmagic_bias);
145     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
146     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
147     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
148 
149     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
150     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
151     float32x4_t vt0123 = vmlaq_f32(vz0123, vn0123, vln2_o64_hi);
152     float32x4_t vt4567 = vmlaq_f32(vz4567, vn4567, vln2_o64_hi);
153     float32x4_t vt89AB = vmlaq_f32(vz89AB, vn89AB, vln2_o64_hi);
154     float32x4_t vtCDEF = vmlaq_f32(vzCDEF, vnCDEF, vln2_o64_hi);
155     float32x4_t vtGHIJ = vmlaq_f32(vzGHIJ, vnGHIJ, vln2_o64_hi);
156 
157     vt0123 = vmlaq_f32(vt0123, vn0123, vln2_o64_lo);
158     vt4567 = vmlaq_f32(vt4567, vn4567, vln2_o64_lo);
159     vt89AB = vmlaq_f32(vt89AB, vn89AB, vln2_o64_lo);
160     vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vln2_o64_lo);
161     vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vln2_o64_lo);
162 
163     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
164     //   P1(t) = 1 + t * (-1 + t * c2)
165     float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
166     float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
167     float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
168     float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
169     float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
170 
171     vp0123 = vmlsq_f32(vt0123, vp0123, vt0123);
172     vp4567 = vmlsq_f32(vt4567, vp4567, vt4567);
173     vp89AB = vmlsq_f32(vt89AB, vp89AB, vt89AB);
174     vpCDEF = vmlsq_f32(vtCDEF, vpCDEF, vtCDEF);
175     vpGHIJ = vmlsq_f32(vtGHIJ, vpGHIJ, vtGHIJ);
176 
177     // Reconstruct the exp(-z) value:
178     //   f = s * (1 + t * (-1 + t * c2))
179     //     = s * (1 - t + t * (t * c2))
180     //     = s - s * (t - t * (t * c2))
181     //     = s - s * p
182     const float32x4_t vy0123 = vmlsq_f32(vs0123, vs0123, vp0123);
183     const float32x4_t vy4567 = vmlsq_f32(vs4567, vs4567, vp4567);
184     const float32x4_t vy89AB = vmlsq_f32(vs89AB, vs89AB, vp89AB);
185     const float32x4_t vyCDEF = vmlsq_f32(vsCDEF, vsCDEF, vpCDEF);
186     const float32x4_t vyGHIJ = vmlsq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
187 
188     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
189     const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
190     const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
191     const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
192     const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
193     const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone);
194 
195     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
196     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
197     // Thus the reciprocal of the denominator never overflows.
198     float32x4_t vr0123 = vrecpeq_f32(vd0123);
199     float32x4_t vr4567 = vrecpeq_f32(vd4567);
200     float32x4_t vr89AB = vrecpeq_f32(vd89AB);
201     float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
202     float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
203 
204     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
205     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
206     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
207     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
208     vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
209 
210     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
211     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
212     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
213     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
214     vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
215 
216     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
217     float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
218     float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
219     float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
220     float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
221     float32x4_t vfGHIJ = vmulq_f32(vyGHIJ, vrGHIJ);
222 
223     // For inputs below denormal cutoff, replace output with +0.0f.
224     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
225     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
226     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
227     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
228     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
229     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
230 
231     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
232     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
233     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
234     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
235     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
236     const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
237 
238     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
239     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
240     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
241     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
242     vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
243 
244     vst1q_f32(y, vf0123); y += 4;
245     vst1q_f32(y, vf4567); y += 4;
246     vst1q_f32(y, vf89AB); y += 4;
247     vst1q_f32(y, vfCDEF); y += 4;
248     vst1q_f32(y, vfGHIJ); y += 4;
249   }
250   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
251     const float32x4_t vx = vld1q_f32(x); x += 4;
252 
253     // General structure of the algorithm:
254     //           / exp(x) / (1 + exp(x)) if x <= 0
255     //   f[x] :=
256     //           \ 1 - f[-x] if x >= 0
257     //
258     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
259     // then replace result with 1 - f[-z] if x >= 0.
260     const float32x4_t vz = vabsq_f32(vx);
261 
262     // Compute reduced argument n := round(-z * 64 / log(2)).
263     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
264     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
265     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
266     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
267     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
268     // very end of the algorithm.
269     float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
270 
271     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
272     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
273     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
274     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
275     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
276     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
277     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
278     //    and thus the adjusted exponent is not lower than -126.
279     //
280     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
281     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
282 
283     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
284     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
285     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
286     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
287     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
288     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
289     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
290     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
291     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
292     // Adjust exponent of the value l fetched from the table to get the final s value.
293     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
294 
295     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
296     vn = vsubq_f32(vn, vmagic_bias);
297 
298     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
299     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
300     float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
301     vt = vmlaq_f32(vt, vn, vln2_o64_lo);
302 
303     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
304     //   P1(t) = 1 + t * (-1 + t * c2)
305     float32x4_t vp = vmulq_f32(vt, vc2);
306     vp = vmlsq_f32(vt, vp, vt);
307 
308     // Reconstruct the exp(-z) value:
309     //   f = s * (1 + t * (-1 + t * c2))
310     //     = s * (1 - t + t * (t * c2))
311     //     = s - s * (t - t * (t * c2))
312     //     = s - s * p
313     const float32x4_t vy = vmlsq_f32(vs, vs, vp);
314 
315     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
316     const float32x4_t vd = vaddq_f32(vy, vone);
317 
318     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
319     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
320     // Thus the reciprocal of the denominator never overflows.
321     float32x4_t vr = vrecpeq_f32(vd);
322 
323     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
324 
325     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
326 
327     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
328     float32x4_t vf = vmulq_f32(vy, vr);
329 
330     // For inputs below denormal cutoff, replace output with +0.0f.
331     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
332     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
333 
334     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
335     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
336     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
337 
338     vst1q_f32(y, vf); y += 4;
339   }
340   if XNN_UNLIKELY(n != 0) {
341     const float32x4_t vx = vld1q_f32(x);
342 
343     // General structure of the algorithm:
344     //           / exp(x) / (1 + exp(x)) if x <= 0
345     //   f[x] :=
346     //           \ 1 - f[-x] if x >= 0
347     //
348     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
349     // then replace result with 1 - f[-z] if x >= 0.
350     const float32x4_t vz = vabsq_f32(vx);
351 
352     // Compute reduced argument n := round(-z * 64 / log(2)).
353     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
354     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
355     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
356     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
357     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
358     // very end of the algorithm.
359     float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
360 
361     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
362     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
363     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
364     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
365     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
366     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
367     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
368     //    and thus the adjusted exponent is not lower than -126.
369     //
370     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
371     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
372 
373     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
374     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
375     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
376     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
377     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
378     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
379     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
380     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
381     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
382     // Adjust exponent of the value l fetched from the table to get the final s value.
383     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
384 
385     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
386     vn = vsubq_f32(vn, vmagic_bias);
387 
388     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
389     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
390     float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
391     vt = vmlaq_f32(vt, vn, vln2_o64_lo);
392 
393     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
394     //   P1(t) = 1 + t * (-1 + t * c2)
395     float32x4_t vp = vmulq_f32(vt, vc2);
396     vp = vmlsq_f32(vt, vp, vt);
397 
398     // Reconstruct the exp(-z) value:
399     //   f = s * (1 + t * (-1 + t * c2))
400     //     = s * (1 - t + t * (t * c2))
401     //     = s - s * (t - t * (t * c2))
402     //     = s - s * p
403     const float32x4_t vy = vmlsq_f32(vs, vs, vp);
404 
405     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
406     const float32x4_t vd = vaddq_f32(vy, vone);
407 
408     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
409     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
410     // Thus the reciprocal of the denominator never overflows.
411     float32x4_t vr = vrecpeq_f32(vd);
412 
413     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
414 
415     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
416 
417     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
418     float32x4_t vf = vmulq_f32(vy, vr);
419 
420     // For inputs below denormal cutoff, replace output with +0.0f.
421     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
422     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
423 
424     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
425     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
426     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
427 
428     float32x2_t vf_lo = vget_low_f32(vf);
429     if (n & (2 * sizeof(float))) {
430       vst1_f32(y, vf_lo); y += 2;
431       vf_lo = vget_high_f32(vf);
432     }
433     if (n & (1 * sizeof(float))) {
434       vst1_lane_f32(y, vf_lo, 0);
435     }
436   }
437 }
438