1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x20(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x20(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33 // Last 13 bits are zeroes
34 const float32x4_t vln2_o64_hi = vmovq_n_f32(0x1.630000p-7f);
35 const float32x4_t vln2_o64_lo = vmovq_n_f32(-0x1.BD0106p-19f);
36 const float32x4_t vone = vmovq_n_f32(1.0f);
37
38 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
39
40 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
41
42 for (; n >= 20 * sizeof(float); n -= 20 * sizeof(float)) {
43 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
44 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
45 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
46 const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
47 const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
48
49 // General structure of the algorithm:
50 // / exp(x) / (1 + exp(x)) if x <= 0
51 // f[x] :=
52 // \ 1 - f[-x] if x >= 0
53 //
54 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
55 // then replace result with 1 - f[-z] if x >= 0.
56 const float32x4_t vz0123 = vabsq_f32(vx0123);
57 const float32x4_t vz4567 = vabsq_f32(vx4567);
58 const float32x4_t vz89AB = vabsq_f32(vx89AB);
59 const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
60 const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
61
62 // Compute reduced argument n := round(-z * 64 / log(2)).
63 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
64 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
65 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
66 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
67 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
68 // very end of the algorithm.
69 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
70 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
71 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
72 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x64);
73 float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vzGHIJ, vminus_log2e_x64);
74
75 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
76 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
77 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
78 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
79 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
80 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
81 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
82 // and thus the adjusted exponent is not lower than -126.
83 //
84 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
85 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
86 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
87 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
88 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
89 const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
90
91 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
92 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
93 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
94 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
95 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
96 const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
97
98 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
99 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
100 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
101 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
102 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
103 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
104 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
105 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
106 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
107 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
108 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
109 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
110 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
111 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
112 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
113 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
114 const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
115 const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
116 float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
117 float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
118
119 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
120 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
121 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
122 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
123 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
124 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
125 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
126 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
127 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
128 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
129 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
130 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
131 vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
132 vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
133 const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
134
135 // Adjust exponent of the value l fetched from the table to get the final s value.
136 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
137 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
138 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
139 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
140 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
141
142 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
143 vn0123 = vsubq_f32(vn0123, vmagic_bias);
144 vn4567 = vsubq_f32(vn4567, vmagic_bias);
145 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
146 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
147 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
148
149 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
150 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
151 float32x4_t vt0123 = vmlaq_f32(vz0123, vn0123, vln2_o64_hi);
152 float32x4_t vt4567 = vmlaq_f32(vz4567, vn4567, vln2_o64_hi);
153 float32x4_t vt89AB = vmlaq_f32(vz89AB, vn89AB, vln2_o64_hi);
154 float32x4_t vtCDEF = vmlaq_f32(vzCDEF, vnCDEF, vln2_o64_hi);
155 float32x4_t vtGHIJ = vmlaq_f32(vzGHIJ, vnGHIJ, vln2_o64_hi);
156
157 vt0123 = vmlaq_f32(vt0123, vn0123, vln2_o64_lo);
158 vt4567 = vmlaq_f32(vt4567, vn4567, vln2_o64_lo);
159 vt89AB = vmlaq_f32(vt89AB, vn89AB, vln2_o64_lo);
160 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vln2_o64_lo);
161 vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vln2_o64_lo);
162
163 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
164 // P1(t) = 1 + t * (-1 + t * c2)
165 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
166 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
167 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
168 float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
169 float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
170
171 vp0123 = vmlsq_f32(vt0123, vp0123, vt0123);
172 vp4567 = vmlsq_f32(vt4567, vp4567, vt4567);
173 vp89AB = vmlsq_f32(vt89AB, vp89AB, vt89AB);
174 vpCDEF = vmlsq_f32(vtCDEF, vpCDEF, vtCDEF);
175 vpGHIJ = vmlsq_f32(vtGHIJ, vpGHIJ, vtGHIJ);
176
177 // Reconstruct the exp(-z) value:
178 // f = s * (1 + t * (-1 + t * c2))
179 // = s * (1 - t + t * (t * c2))
180 // = s - s * (t - t * (t * c2))
181 // = s - s * p
182 const float32x4_t vy0123 = vmlsq_f32(vs0123, vs0123, vp0123);
183 const float32x4_t vy4567 = vmlsq_f32(vs4567, vs4567, vp4567);
184 const float32x4_t vy89AB = vmlsq_f32(vs89AB, vs89AB, vp89AB);
185 const float32x4_t vyCDEF = vmlsq_f32(vsCDEF, vsCDEF, vpCDEF);
186 const float32x4_t vyGHIJ = vmlsq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
187
188 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
189 const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
190 const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
191 const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
192 const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
193 const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone);
194
195 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
196 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
197 // Thus the reciprocal of the denominator never overflows.
198 float32x4_t vr0123 = vrecpeq_f32(vd0123);
199 float32x4_t vr4567 = vrecpeq_f32(vd4567);
200 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
201 float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
202 float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
203
204 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
205 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
206 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
207 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
208 vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
209
210 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
211 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
212 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
213 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
214 vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
215
216 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
217 float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
218 float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
219 float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
220 float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
221 float32x4_t vfGHIJ = vmulq_f32(vyGHIJ, vrGHIJ);
222
223 // For inputs below denormal cutoff, replace output with +0.0f.
224 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
225 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
226 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
227 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
228 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
229 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
230
231 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
232 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
233 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
234 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
235 const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
236 const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
237
238 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
239 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
240 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
241 vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
242 vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
243
244 vst1q_f32(y, vf0123); y += 4;
245 vst1q_f32(y, vf4567); y += 4;
246 vst1q_f32(y, vf89AB); y += 4;
247 vst1q_f32(y, vfCDEF); y += 4;
248 vst1q_f32(y, vfGHIJ); y += 4;
249 }
250 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
251 const float32x4_t vx = vld1q_f32(x); x += 4;
252
253 // General structure of the algorithm:
254 // / exp(x) / (1 + exp(x)) if x <= 0
255 // f[x] :=
256 // \ 1 - f[-x] if x >= 0
257 //
258 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
259 // then replace result with 1 - f[-z] if x >= 0.
260 const float32x4_t vz = vabsq_f32(vx);
261
262 // Compute reduced argument n := round(-z * 64 / log(2)).
263 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
264 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
265 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
266 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
267 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
268 // very end of the algorithm.
269 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
270
271 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
272 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
273 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
274 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
275 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
276 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
277 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
278 // and thus the adjusted exponent is not lower than -126.
279 //
280 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
281 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
282
283 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
284 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
285 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
286 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
287 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
288 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
289 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
290 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
291 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
292 // Adjust exponent of the value l fetched from the table to get the final s value.
293 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
294
295 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
296 vn = vsubq_f32(vn, vmagic_bias);
297
298 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
299 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
300 float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
301 vt = vmlaq_f32(vt, vn, vln2_o64_lo);
302
303 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
304 // P1(t) = 1 + t * (-1 + t * c2)
305 float32x4_t vp = vmulq_f32(vt, vc2);
306 vp = vmlsq_f32(vt, vp, vt);
307
308 // Reconstruct the exp(-z) value:
309 // f = s * (1 + t * (-1 + t * c2))
310 // = s * (1 - t + t * (t * c2))
311 // = s - s * (t - t * (t * c2))
312 // = s - s * p
313 const float32x4_t vy = vmlsq_f32(vs, vs, vp);
314
315 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
316 const float32x4_t vd = vaddq_f32(vy, vone);
317
318 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
319 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
320 // Thus the reciprocal of the denominator never overflows.
321 float32x4_t vr = vrecpeq_f32(vd);
322
323 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
324
325 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
326
327 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
328 float32x4_t vf = vmulq_f32(vy, vr);
329
330 // For inputs below denormal cutoff, replace output with +0.0f.
331 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
332 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
333
334 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
335 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
336 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
337
338 vst1q_f32(y, vf); y += 4;
339 }
340 if XNN_UNLIKELY(n != 0) {
341 const float32x4_t vx = vld1q_f32(x);
342
343 // General structure of the algorithm:
344 // / exp(x) / (1 + exp(x)) if x <= 0
345 // f[x] :=
346 // \ 1 - f[-x] if x >= 0
347 //
348 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
349 // then replace result with 1 - f[-z] if x >= 0.
350 const float32x4_t vz = vabsq_f32(vx);
351
352 // Compute reduced argument n := round(-z * 64 / log(2)).
353 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
354 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
355 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
356 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
357 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
358 // very end of the algorithm.
359 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
360
361 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
362 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
363 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
364 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
365 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
366 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
367 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
368 // and thus the adjusted exponent is not lower than -126.
369 //
370 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
371 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
372
373 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
374 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
375 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
376 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
377 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
378 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
379 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
380 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
381 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
382 // Adjust exponent of the value l fetched from the table to get the final s value.
383 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
384
385 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
386 vn = vsubq_f32(vn, vmagic_bias);
387
388 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
389 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
390 float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
391 vt = vmlaq_f32(vt, vn, vln2_o64_lo);
392
393 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
394 // P1(t) = 1 + t * (-1 + t * c2)
395 float32x4_t vp = vmulq_f32(vt, vc2);
396 vp = vmlsq_f32(vt, vp, vt);
397
398 // Reconstruct the exp(-z) value:
399 // f = s * (1 + t * (-1 + t * c2))
400 // = s * (1 - t + t * (t * c2))
401 // = s - s * (t - t * (t * c2))
402 // = s - s * p
403 const float32x4_t vy = vmlsq_f32(vs, vs, vp);
404
405 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
406 const float32x4_t vd = vaddq_f32(vy, vone);
407
408 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
409 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
410 // Thus the reciprocal of the denominator never overflows.
411 float32x4_t vr = vrecpeq_f32(vd);
412
413 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
414
415 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
416
417 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
418 float32x4_t vf = vmulq_f32(vy, vr);
419
420 // For inputs below denormal cutoff, replace output with +0.0f.
421 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
422 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
423
424 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
425 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
426 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
427
428 float32x2_t vf_lo = vget_low_f32(vf);
429 if (n & (2 * sizeof(float))) {
430 vst1_f32(y, vf_lo); y += 2;
431 vf_lo = vget_high_f32(vf);
432 }
433 if (n & (1 * sizeof(float))) {
434 vst1_lane_f32(y, vf_lo, 0);
435 }
436 }
437 }
438