• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x24(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x24(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33   // Last 13 bits are zeroes
34   const float32x4_t vln2_o64_hi = vmovq_n_f32(0x1.630000p-7f);
35   const float32x4_t vln2_o64_lo = vmovq_n_f32(-0x1.BD0106p-19f);
36   const float32x4_t vone = vmovq_n_f32(1.0f);
37 
38   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
39 
40   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
41 
42   for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
43     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
44     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
45     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
46     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
47     const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
48     const float32x4_t vxKLMN = vld1q_f32(x); x += 4;
49 
50     // General structure of the algorithm:
51     //           / exp(x) / (1 + exp(x)) if x <= 0
52     //   f[x] :=
53     //           \ 1 - f[-x] if x >= 0
54     //
55     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
56     // then replace result with 1 - f[-z] if x >= 0.
57     const float32x4_t vz0123 = vabsq_f32(vx0123);
58     const float32x4_t vz4567 = vabsq_f32(vx4567);
59     const float32x4_t vz89AB = vabsq_f32(vx89AB);
60     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
61     const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
62     const float32x4_t vzKLMN = vabsq_f32(vxKLMN);
63 
64     // Compute reduced argument n := round(-z * 64 / log(2)).
65     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
66     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
67     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
68     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
69     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
70     // very end of the algorithm.
71     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
72     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
73     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
74     float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x64);
75     float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vzGHIJ, vminus_log2e_x64);
76     float32x4_t vnKLMN = vmlaq_f32(vmagic_bias, vzKLMN, vminus_log2e_x64);
77 
78     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
79     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
80     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
81     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
82     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
83     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
84     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
85     //    and thus the adjusted exponent is not lower than -126.
86     //
87     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
88     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
89     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
90     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
91     const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
92     const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
93     const int32x4_t veKLMN = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnKLMN), vmovq_n_s32(INT32_C(0x3F))), 17);
94 
95     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
96     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
97     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
98     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
99     const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
100     const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
101     const uint64x2_t vidxKLMN = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnKLMN), vindex_mask));
102 
103     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
104     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
105     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
106     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
107     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
108     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
109     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
110     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
111     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
112     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
113     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
114     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
115     const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
116     const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
117     float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
118     float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
119     const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
120     const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
121     float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
122     float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
123     const uint64_t vidxKL = vgetq_lane_u64(vidxKLMN, 0);
124     const uint64_t vidxMN = vgetq_lane_u64(vidxKLMN, 1);
125     float32x2_t vlKL = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxKL]);
126     float32x2_t vlMN = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxMN]);
127 
128     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
129     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
130     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
131     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
132     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
133     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
134     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
135     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
136     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
137     vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
138     vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
139     const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
140     vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
141     vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
142     const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
143     vlKL = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxKL >> 32)], vlKL, 1);
144     vlMN = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxMN >> 32)], vlMN, 1);
145     const float32x4_t vlKLMN = vcombine_f32(vlKL, vlMN);
146 
147     // Adjust exponent of the value l fetched from the table to get the final s value.
148     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
149     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
150     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
151     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
152     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
153     const float32x4_t vsKLMN = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlKLMN), veKLMN));
154 
155     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
156     vn0123 = vsubq_f32(vn0123, vmagic_bias);
157     vn4567 = vsubq_f32(vn4567, vmagic_bias);
158     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
159     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
160     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
161     vnKLMN = vsubq_f32(vnKLMN, vmagic_bias);
162 
163     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
164     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
165     float32x4_t vt0123 = vmlaq_f32(vz0123, vn0123, vln2_o64_hi);
166     float32x4_t vt4567 = vmlaq_f32(vz4567, vn4567, vln2_o64_hi);
167     float32x4_t vt89AB = vmlaq_f32(vz89AB, vn89AB, vln2_o64_hi);
168     float32x4_t vtCDEF = vmlaq_f32(vzCDEF, vnCDEF, vln2_o64_hi);
169     float32x4_t vtGHIJ = vmlaq_f32(vzGHIJ, vnGHIJ, vln2_o64_hi);
170     float32x4_t vtKLMN = vmlaq_f32(vzKLMN, vnKLMN, vln2_o64_hi);
171 
172     vt0123 = vmlaq_f32(vt0123, vn0123, vln2_o64_lo);
173     vt4567 = vmlaq_f32(vt4567, vn4567, vln2_o64_lo);
174     vt89AB = vmlaq_f32(vt89AB, vn89AB, vln2_o64_lo);
175     vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vln2_o64_lo);
176     vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vln2_o64_lo);
177     vtKLMN = vmlaq_f32(vtKLMN, vnKLMN, vln2_o64_lo);
178 
179     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
180     //   P1(t) = 1 + t * (-1 + t * c2)
181     float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
182     float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
183     float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
184     float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
185     float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
186     float32x4_t vpKLMN = vmulq_f32(vtKLMN, vc2);
187 
188     vp0123 = vmlsq_f32(vt0123, vp0123, vt0123);
189     vp4567 = vmlsq_f32(vt4567, vp4567, vt4567);
190     vp89AB = vmlsq_f32(vt89AB, vp89AB, vt89AB);
191     vpCDEF = vmlsq_f32(vtCDEF, vpCDEF, vtCDEF);
192     vpGHIJ = vmlsq_f32(vtGHIJ, vpGHIJ, vtGHIJ);
193     vpKLMN = vmlsq_f32(vtKLMN, vpKLMN, vtKLMN);
194 
195     // Reconstruct the exp(-z) value:
196     //   f = s * (1 + t * (-1 + t * c2))
197     //     = s * (1 - t + t * (t * c2))
198     //     = s - s * (t - t * (t * c2))
199     //     = s - s * p
200     const float32x4_t vy0123 = vmlsq_f32(vs0123, vs0123, vp0123);
201     const float32x4_t vy4567 = vmlsq_f32(vs4567, vs4567, vp4567);
202     const float32x4_t vy89AB = vmlsq_f32(vs89AB, vs89AB, vp89AB);
203     const float32x4_t vyCDEF = vmlsq_f32(vsCDEF, vsCDEF, vpCDEF);
204     const float32x4_t vyGHIJ = vmlsq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
205     const float32x4_t vyKLMN = vmlsq_f32(vsKLMN, vsKLMN, vpKLMN);
206 
207     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
208     const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
209     const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
210     const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
211     const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
212     const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone);
213     const float32x4_t vdKLMN = vaddq_f32(vyKLMN, vone);
214 
215     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
216     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
217     // Thus the reciprocal of the denominator never overflows.
218     float32x4_t vr0123 = vrecpeq_f32(vd0123);
219     float32x4_t vr4567 = vrecpeq_f32(vd4567);
220     float32x4_t vr89AB = vrecpeq_f32(vd89AB);
221     float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
222     float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
223     float32x4_t vrKLMN = vrecpeq_f32(vdKLMN);
224 
225     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
226     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
227     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
228     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
229     vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
230     vrKLMN = vmulq_f32(vrKLMN, vrecpsq_f32(vrKLMN, vdKLMN));
231 
232     vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
233     vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
234     vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
235     vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
236     vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
237     vrKLMN = vmulq_f32(vrKLMN, vrecpsq_f32(vrKLMN, vdKLMN));
238 
239     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
240     float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
241     float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
242     float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
243     float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
244     float32x4_t vfGHIJ = vmulq_f32(vyGHIJ, vrGHIJ);
245     float32x4_t vfKLMN = vmulq_f32(vyKLMN, vrKLMN);
246 
247     // For inputs below denormal cutoff, replace output with +0.0f.
248     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
249     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
250     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
251     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
252     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
253     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
254     vfKLMN = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfKLMN), vcagtq_f32(vxKLMN, vdenorm_cutoff)));
255 
256     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
257     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
258     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
259     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
260     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
261     const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
262     const uint32x4_t vmKLMN = vcltq_f32(vxKLMN, vmovq_n_f32(0.0f));
263 
264     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
265     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
266     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
267     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
268     vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
269     vfKLMN = vbslq_f32(vmKLMN, vfKLMN, vsubq_f32(vone, vfKLMN));
270 
271     vst1q_f32(y, vf0123); y += 4;
272     vst1q_f32(y, vf4567); y += 4;
273     vst1q_f32(y, vf89AB); y += 4;
274     vst1q_f32(y, vfCDEF); y += 4;
275     vst1q_f32(y, vfGHIJ); y += 4;
276     vst1q_f32(y, vfKLMN); y += 4;
277   }
278   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
279     const float32x4_t vx = vld1q_f32(x); x += 4;
280 
281     // General structure of the algorithm:
282     //           / exp(x) / (1 + exp(x)) if x <= 0
283     //   f[x] :=
284     //           \ 1 - f[-x] if x >= 0
285     //
286     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
287     // then replace result with 1 - f[-z] if x >= 0.
288     const float32x4_t vz = vabsq_f32(vx);
289 
290     // Compute reduced argument n := round(-z * 64 / log(2)).
291     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
292     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
293     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
294     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
295     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
296     // very end of the algorithm.
297     float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
298 
299     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
300     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
301     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
302     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
303     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
304     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
305     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
306     //    and thus the adjusted exponent is not lower than -126.
307     //
308     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
309     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
310 
311     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
312     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
313     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
314     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
315     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
316     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
317     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
318     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
319     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
320     // Adjust exponent of the value l fetched from the table to get the final s value.
321     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
322 
323     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
324     vn = vsubq_f32(vn, vmagic_bias);
325 
326     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
327     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
328     float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
329     vt = vmlaq_f32(vt, vn, vln2_o64_lo);
330 
331     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
332     //   P1(t) = 1 + t * (-1 + t * c2)
333     float32x4_t vp = vmulq_f32(vt, vc2);
334     vp = vmlsq_f32(vt, vp, vt);
335 
336     // Reconstruct the exp(-z) value:
337     //   f = s * (1 + t * (-1 + t * c2))
338     //     = s * (1 - t + t * (t * c2))
339     //     = s - s * (t - t * (t * c2))
340     //     = s - s * p
341     const float32x4_t vy = vmlsq_f32(vs, vs, vp);
342 
343     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
344     const float32x4_t vd = vaddq_f32(vy, vone);
345 
346     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
347     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
348     // Thus the reciprocal of the denominator never overflows.
349     float32x4_t vr = vrecpeq_f32(vd);
350 
351     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
352 
353     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
354 
355     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
356     float32x4_t vf = vmulq_f32(vy, vr);
357 
358     // For inputs below denormal cutoff, replace output with +0.0f.
359     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
360     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
361 
362     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
363     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
364     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
365 
366     vst1q_f32(y, vf); y += 4;
367   }
368   if XNN_UNLIKELY(n != 0) {
369     const float32x4_t vx = vld1q_f32(x);
370 
371     // General structure of the algorithm:
372     //           / exp(x) / (1 + exp(x)) if x <= 0
373     //   f[x] :=
374     //           \ 1 - f[-x] if x >= 0
375     //
376     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
377     // then replace result with 1 - f[-z] if x >= 0.
378     const float32x4_t vz = vabsq_f32(vx);
379 
380     // Compute reduced argument n := round(-z * 64 / log(2)).
381     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
382     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
383     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
384     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
385     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
386     // very end of the algorithm.
387     float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
388 
389     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
390     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
391     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
392     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
393     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
394     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
395     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
396     //    and thus the adjusted exponent is not lower than -126.
397     //
398     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
399     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
400 
401     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
402     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
403     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
404     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
405     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
406     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
407     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
408     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
409     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
410     // Adjust exponent of the value l fetched from the table to get the final s value.
411     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
412 
413     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
414     vn = vsubq_f32(vn, vmagic_bias);
415 
416     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
417     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
418     float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
419     vt = vmlaq_f32(vt, vn, vln2_o64_lo);
420 
421     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
422     //   P1(t) = 1 + t * (-1 + t * c2)
423     float32x4_t vp = vmulq_f32(vt, vc2);
424     vp = vmlsq_f32(vt, vp, vt);
425 
426     // Reconstruct the exp(-z) value:
427     //   f = s * (1 + t * (-1 + t * c2))
428     //     = s * (1 - t + t * (t * c2))
429     //     = s - s * (t - t * (t * c2))
430     //     = s - s * p
431     const float32x4_t vy = vmlsq_f32(vs, vs, vp);
432 
433     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
434     const float32x4_t vd = vaddq_f32(vy, vone);
435 
436     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
437     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
438     // Thus the reciprocal of the denominator never overflows.
439     float32x4_t vr = vrecpeq_f32(vd);
440 
441     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
442 
443     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
444 
445     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
446     float32x4_t vf = vmulq_f32(vy, vr);
447 
448     // For inputs below denormal cutoff, replace output with +0.0f.
449     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
450     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
451 
452     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
453     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
454     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
455 
456     float32x2_t vf_lo = vget_low_f32(vf);
457     if (n & (2 * sizeof(float))) {
458       vst1_f32(y, vf_lo); y += 2;
459       vf_lo = vget_high_f32(vf);
460     }
461     if (n & (1 * sizeof(float))) {
462       vst1_lane_f32(y, vf_lo, 0);
463     }
464   }
465 }
466