1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x4(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x4(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33 // Last 13 bits are zeroes
34 const float32x4_t vln2_o64_hi = vmovq_n_f32(0x1.630000p-7f);
35 const float32x4_t vln2_o64_lo = vmovq_n_f32(-0x1.BD0106p-19f);
36 const float32x4_t vone = vmovq_n_f32(1.0f);
37
38 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
39
40 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
41
42 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
43 const float32x4_t vx = vld1q_f32(x); x += 4;
44
45 // General structure of the algorithm:
46 // / exp(x) / (1 + exp(x)) if x <= 0
47 // f[x] :=
48 // \ 1 - f[-x] if x >= 0
49 //
50 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
51 // then replace result with 1 - f[-z] if x >= 0.
52 const float32x4_t vz = vabsq_f32(vx);
53
54 // Compute reduced argument n := round(-z * 64 / log(2)).
55 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
56 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
57 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
58 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
59 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
60 // very end of the algorithm.
61 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
62
63 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
64 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
65 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
66 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
67 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
68 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
69 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
70 // and thus the adjusted exponent is not lower than -126.
71 //
72 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
73 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
74
75 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
76 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
77 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
78 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
79 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
80 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
81 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
82 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
83 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
84 // Adjust exponent of the value l fetched from the table to get the final s value.
85 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
86
87 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
88 vn = vsubq_f32(vn, vmagic_bias);
89
90 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
91 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
92 float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
93 vt = vmlaq_f32(vt, vn, vln2_o64_lo);
94
95 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
96 // P1(t) = 1 + t * (-1 + t * c2)
97 float32x4_t vp = vmulq_f32(vt, vc2);
98 vp = vmlsq_f32(vt, vp, vt);
99
100 // Reconstruct the exp(-z) value:
101 // f = s * (1 + t * (-1 + t * c2))
102 // = s * (1 - t + t * (t * c2))
103 // = s - s * (t - t * (t * c2))
104 // = s - s * p
105 const float32x4_t vy = vmlsq_f32(vs, vs, vp);
106
107 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
108 const float32x4_t vd = vaddq_f32(vy, vone);
109
110 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
111 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
112 // Thus the reciprocal of the denominator never overflows.
113 float32x4_t vr = vrecpeq_f32(vd);
114
115 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
116
117 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
118
119 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
120 float32x4_t vf = vmulq_f32(vy, vr);
121
122 // For inputs below denormal cutoff, replace output with +0.0f.
123 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
124 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
125
126 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
127 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
128 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
129
130 vst1q_f32(y, vf); y += 4;
131 }
132 if XNN_UNLIKELY(n != 0) {
133 const float32x4_t vx = vld1q_f32(x);
134
135 // General structure of the algorithm:
136 // / exp(x) / (1 + exp(x)) if x <= 0
137 // f[x] :=
138 // \ 1 - f[-x] if x >= 0
139 //
140 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
141 // then replace result with 1 - f[-z] if x >= 0.
142 const float32x4_t vz = vabsq_f32(vx);
143
144 // Compute reduced argument n := round(-z * 64 / log(2)).
145 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
146 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
147 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
148 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
149 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
150 // very end of the algorithm.
151 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
152
153 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
154 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
155 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
156 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
157 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
158 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
159 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
160 // and thus the adjusted exponent is not lower than -126.
161 //
162 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
163 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
164
165 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
166 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
167 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
168 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
169 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
170 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
171 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
172 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
173 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
174 // Adjust exponent of the value l fetched from the table to get the final s value.
175 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
176
177 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
178 vn = vsubq_f32(vn, vmagic_bias);
179
180 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
181 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
182 float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
183 vt = vmlaq_f32(vt, vn, vln2_o64_lo);
184
185 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
186 // P1(t) = 1 + t * (-1 + t * c2)
187 float32x4_t vp = vmulq_f32(vt, vc2);
188 vp = vmlsq_f32(vt, vp, vt);
189
190 // Reconstruct the exp(-z) value:
191 // f = s * (1 + t * (-1 + t * c2))
192 // = s * (1 - t + t * (t * c2))
193 // = s - s * (t - t * (t * c2))
194 // = s - s * p
195 const float32x4_t vy = vmlsq_f32(vs, vs, vp);
196
197 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
198 const float32x4_t vd = vaddq_f32(vy, vone);
199
200 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
201 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
202 // Thus the reciprocal of the denominator never overflows.
203 float32x4_t vr = vrecpeq_f32(vd);
204
205 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
206
207 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
208
209 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
210 float32x4_t vf = vmulq_f32(vy, vr);
211
212 // For inputs below denormal cutoff, replace output with +0.0f.
213 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
214 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
215
216 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
217 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
218 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
219
220 float32x2_t vf_lo = vget_low_f32(vf);
221 if (n & (2 * sizeof(float))) {
222 vst1_f32(y, vf_lo); y += 2;
223 vf_lo = vget_high_f32(vf);
224 }
225 if (n & (1 * sizeof(float))) {
226 vst1_lane_f32(y, vf_lo, 0);
227 }
228 }
229 }
230