• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x4(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neon_rr2_lut64_p2_nr2recps_x4(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33   // Last 13 bits are zeroes
34   const float32x4_t vln2_o64_hi = vmovq_n_f32(0x1.630000p-7f);
35   const float32x4_t vln2_o64_lo = vmovq_n_f32(-0x1.BD0106p-19f);
36   const float32x4_t vone = vmovq_n_f32(1.0f);
37 
38   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
39 
40   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
41 
42   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
43     const float32x4_t vx = vld1q_f32(x); x += 4;
44 
45     // General structure of the algorithm:
46     //           / exp(x) / (1 + exp(x)) if x <= 0
47     //   f[x] :=
48     //           \ 1 - f[-x] if x >= 0
49     //
50     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
51     // then replace result with 1 - f[-z] if x >= 0.
52     const float32x4_t vz = vabsq_f32(vx);
53 
54     // Compute reduced argument n := round(-z * 64 / log(2)).
55     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
56     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
57     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
58     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
59     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
60     // very end of the algorithm.
61     float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
62 
63     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
64     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
65     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
66     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
67     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
68     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
69     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
70     //    and thus the adjusted exponent is not lower than -126.
71     //
72     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
73     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
74 
75     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
76     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
77     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
78     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
79     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
80     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
81     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
82     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
83     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
84     // Adjust exponent of the value l fetched from the table to get the final s value.
85     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
86 
87     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
88     vn = vsubq_f32(vn, vmagic_bias);
89 
90     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
91     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
92     float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
93     vt = vmlaq_f32(vt, vn, vln2_o64_lo);
94 
95     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
96     //   P1(t) = 1 + t * (-1 + t * c2)
97     float32x4_t vp = vmulq_f32(vt, vc2);
98     vp = vmlsq_f32(vt, vp, vt);
99 
100     // Reconstruct the exp(-z) value:
101     //   f = s * (1 + t * (-1 + t * c2))
102     //     = s * (1 - t + t * (t * c2))
103     //     = s - s * (t - t * (t * c2))
104     //     = s - s * p
105     const float32x4_t vy = vmlsq_f32(vs, vs, vp);
106 
107     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
108     const float32x4_t vd = vaddq_f32(vy, vone);
109 
110     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
111     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
112     // Thus the reciprocal of the denominator never overflows.
113     float32x4_t vr = vrecpeq_f32(vd);
114 
115     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
116 
117     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
118 
119     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
120     float32x4_t vf = vmulq_f32(vy, vr);
121 
122     // For inputs below denormal cutoff, replace output with +0.0f.
123     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
124     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
125 
126     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
127     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
128     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
129 
130     vst1q_f32(y, vf); y += 4;
131   }
132   if XNN_UNLIKELY(n != 0) {
133     const float32x4_t vx = vld1q_f32(x);
134 
135     // General structure of the algorithm:
136     //           / exp(x) / (1 + exp(x)) if x <= 0
137     //   f[x] :=
138     //           \ 1 - f[-x] if x >= 0
139     //
140     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
141     // then replace result with 1 - f[-z] if x >= 0.
142     const float32x4_t vz = vabsq_f32(vx);
143 
144     // Compute reduced argument n := round(-z * 64 / log(2)).
145     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
146     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
147     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
148     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
149     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
150     // very end of the algorithm.
151     float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e_x64);
152 
153     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
154     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
155     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
156     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
157     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
158     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
159     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
160     //    and thus the adjusted exponent is not lower than -126.
161     //
162     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
163     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
164 
165     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
166     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
167     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
168     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
169     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
170     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
171     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
172     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
173     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
174     // Adjust exponent of the value l fetched from the table to get the final s value.
175     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
176 
177     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
178     vn = vsubq_f32(vn, vmagic_bias);
179 
180     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
181     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 64) to improve accuracy.
182     float32x4_t vt = vmlaq_f32(vz, vn, vln2_o64_hi);
183     vt = vmlaq_f32(vt, vn, vln2_o64_lo);
184 
185     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
186     //   P1(t) = 1 + t * (-1 + t * c2)
187     float32x4_t vp = vmulq_f32(vt, vc2);
188     vp = vmlsq_f32(vt, vp, vt);
189 
190     // Reconstruct the exp(-z) value:
191     //   f = s * (1 + t * (-1 + t * c2))
192     //     = s * (1 - t + t * (t * c2))
193     //     = s - s * (t - t * (t * c2))
194     //     = s - s * p
195     const float32x4_t vy = vmlsq_f32(vs, vs, vp);
196 
197     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
198     const float32x4_t vd = vaddq_f32(vy, vone);
199 
200     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
201     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
202     // Thus the reciprocal of the denominator never overflows.
203     float32x4_t vr = vrecpeq_f32(vd);
204 
205     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
206 
207     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
208 
209     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
210     float32x4_t vf = vmulq_f32(vy, vr);
211 
212     // For inputs below denormal cutoff, replace output with +0.0f.
213     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
214     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
215 
216     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
217     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
218     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
219 
220     float32x2_t vf_lo = vget_low_f32(vf);
221     if (n & (2 * sizeof(float))) {
222       vst1_f32(y, vf_lo); y += 2;
223       vf_lo = vget_high_f32(vf);
224     }
225     if (n & (1 * sizeof(float))) {
226       vst1_lane_f32(y, vf_lo, 0);
227     }
228   }
229 }
230