1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
xnn_f32_sigmoid_ukernel__neon_rr2_p5_nr2recps_x12(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__neon_rr2_p5_nr2recps_x12(
19 size_t n,
20 const float* x,
21 float* y,
22 const void* params)
23 {
24 assert(n % sizeof(float) == 0);
25
26 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27 // The largest z for which sigmoidf(-z) is normalized.
28 // This number is also the largest z for which expf(-z) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30 const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E400p-1f);
33 const float32x4_t vln2_lo = vmovq_n_f32(0x1.7F7D1Cp-20f);
34 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
37 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
38 const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
39 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
40 const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
41
42 for (; n >= 12 * sizeof(float); n -= 12 * sizeof(float)) {
43 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
44 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
45 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
46
47 // General structure of the algorithm:
48 // / exp(x) / (1 + exp(x)) if x <= 0
49 // f[x] :=
50 // \ 1 - f[-x] if x >= 0
51 //
52 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
53 // then replace result with 1 - f[z] if x >= 0.
54 const float32x4_t vz0123 = vabsq_f32(vx0123);
55 const float32x4_t vz4567 = vabsq_f32(vx4567);
56 const float32x4_t vz89AB = vabsq_f32(vx89AB);
57
58 // Compute reduced argument n := round(-z / log(2)).
59 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
60 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
62 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
63 // anyway. We fixup the result for such inputs at the very end of the algorithm.
64 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vz0123, vminus_log2e);
65 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vz4567, vminus_log2e);
66 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vz89AB, vminus_log2e);
67
68 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
69 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
70 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
71 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
72 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
73
74 // Subtract the large number back to get final n := round(-z / log(2)).
75 vn0123 = vsubq_f32(vn0123, vmagic_bias);
76 vn4567 = vsubq_f32(vn4567, vmagic_bias);
77 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
78
79 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
80 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
81 float32x4_t vt0123 = vmlaq_f32(vz0123, vn0123, vln2_hi);
82 float32x4_t vt4567 = vmlaq_f32(vz4567, vn4567, vln2_hi);
83 float32x4_t vt89AB = vmlaq_f32(vz89AB, vn89AB, vln2_hi);
84
85 vt0123 = vmlaq_f32(vt0123, vn0123, vln2_lo);
86 vt4567 = vmlaq_f32(vt4567, vn4567, vln2_lo);
87 vt89AB = vmlaq_f32(vt89AB, vn89AB, vln2_lo);
88
89 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
90 float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
91 float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
92 float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
93
94 vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
95 vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
96 vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
97
98 vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
99 vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
100 vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
101
102 vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
103 vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
104 vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
105
106 // Reconstruct the exp(-z) value:
107 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
108 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
109 // = s + (t * s) * p
110 vt0123 = vmulq_f32(vt0123, vs0123);
111 vt4567 = vmulq_f32(vt4567, vs4567);
112 vt89AB = vmulq_f32(vt89AB, vs89AB);
113
114 float32x4_t ve0123 = vmlaq_f32(vs0123, vp0123, vt0123);
115 float32x4_t ve4567 = vmlaq_f32(vs4567, vp4567, vt4567);
116 float32x4_t ve89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
117
118 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
119 float32x4_t vd0123 = vaddq_f32(ve0123, vone);
120 float32x4_t vd4567 = vaddq_f32(ve4567, vone);
121 float32x4_t vd89AB = vaddq_f32(ve89AB, vone);
122
123 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
124 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
125 // Thus the reciprocal of the denominator never overflows.
126 float32x4_t vr0123 = vrecpeq_f32(vd0123);
127 float32x4_t vr4567 = vrecpeq_f32(vd4567);
128 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
129
130 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
131 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
132 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
133
134 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
135 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
136 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
137
138 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
139 float32x4_t vf0123 = vmulq_f32(ve0123, vr0123);
140 float32x4_t vf4567 = vmulq_f32(ve4567, vr4567);
141 float32x4_t vf89AB = vmulq_f32(ve89AB, vr89AB);
142
143 // For inputs below denormal cutoff, replace output with +0.0f.
144 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
145 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
146 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
147 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
148
149 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
150 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
151 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
152 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
153
154 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
155 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
156 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
157
158 vst1q_f32(y, vf0123); y += 4;
159 vst1q_f32(y, vf4567); y += 4;
160 vst1q_f32(y, vf89AB); y += 4;
161 }
162 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
163 const float32x4_t vx = vld1q_f32(x); x += 4;
164
165 // General structure of the algorithm:
166 // / exp(x) / (1 + exp(x)) if x <= 0
167 // f[x] :=
168 // \ 1 - f[-x] if x >= 0
169 //
170 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
171 // then replace result with 1 - f[z] if x <= 0.
172 const float32x4_t vz = vabsq_f32(vx);
173
174 // Compute reduced argument n := round(-z / log(2)).
175 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
176 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
177 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
178 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
179 // anyway. We fixup the result for such inputs at the very end of the algorithm.
180 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e);
181
182 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
183 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
184 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
185
186 // Subtract the large number back to get final n := round(-z / log(2)).
187 vn = vsubq_f32(vn, vmagic_bias);
188
189 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
190 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
191 float32x4_t vt = vmlaq_f32(vz, vn, vln2_hi);
192 vt = vmlaq_f32(vt, vn, vln2_lo);
193
194 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
195 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
196 vp = vmlaq_f32(vc3, vp, vt);
197 vp = vmlaq_f32(vc2, vp, vt);
198 vp = vmlaq_f32(vc1, vp, vt);
199
200 // Reconstruct the exp(-z) value:
201 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
202 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
203 // = s + (t * s) * p
204 vt = vmulq_f32(vt, vs);
205 float32x4_t ve = vmlaq_f32(vs, vp, vt);
206
207 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
208 float32x4_t vd = vaddq_f32(ve, vone);
209
210 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
211 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
212 // Thus the reciprocal of the denominator never overflows.
213 float32x4_t vr = vrecpeq_f32(vd);
214
215 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
216
217 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
218
219 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
220 float32x4_t vf = vmulq_f32(ve, vr);
221
222 // For inputs below denormal cutoff, replace output with +0.0f.
223 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
224 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
225
226 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
227 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
228 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
229
230 vst1q_f32(y, vf); y += 4;
231 }
232 if XNN_UNLIKELY(n != 0) {
233 const float32x4_t vx = vld1q_f32(x);
234
235 // General structure of the algorithm:
236 // / exp(x) / (1 + exp(x)) if x <= 0
237 // f[x] :=
238 // \ 1 - f[-x] if x >= 0
239 //
240 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
241 // then replace result with 1 - f[z] if x <= 0.
242 const float32x4_t vz = vabsq_f32(vx);
243
244 // Compute reduced argument n := round(-z / log(2)).
245 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
246 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
247 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
248 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
249 // anyway. We fixup the result for such inputs at the very end of the algorithm.
250 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e);
251
252 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
253 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
254 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
255
256 // Subtract the large number back to get final n := round(-z / log(2)).
257 vn = vsubq_f32(vn, vmagic_bias);
258
259 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
260 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
261 float32x4_t vt = vmlaq_f32(vz, vn, vln2_hi);
262 vt = vmlaq_f32(vt, vn, vln2_lo);
263
264 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
265 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
266 vp = vmlaq_f32(vc3, vp, vt);
267 vp = vmlaq_f32(vc2, vp, vt);
268 vp = vmlaq_f32(vc1, vp, vt);
269
270 // Reconstruct the exp(-z) value:
271 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
272 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
273 // = s + (t * s) * p
274 vt = vmulq_f32(vt, vs);
275 float32x4_t ve = vmlaq_f32(vs, vp, vt);
276
277 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
278 float32x4_t vd = vaddq_f32(ve, vone);
279
280 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
281 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
282 // Thus the reciprocal of the denominator never overflows.
283 float32x4_t vr = vrecpeq_f32(vd);
284
285 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
286
287 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
288
289 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
290 float32x4_t vf = vmulq_f32(ve, vr);
291
292 // For inputs below denormal cutoff, replace output with +0.0f.
293 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
294 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
295
296 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
297 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
298 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
299
300 float32x2_t vf_lo = vget_low_f32(vf);
301 if (n & (2 * sizeof(float))) {
302 vst1_f32(y, vf_lo); y += 2;
303 vf_lo = vget_high_f32(vf);
304 }
305 if (n & (1 * sizeof(float))) {
306 vst1_lane_f32(y, vf_lo, 0);
307 }
308 }
309 }
310