1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
xnn_f32_sigmoid_ukernel__neon_rr2_p5_nr2recps_x20(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__neon_rr2_p5_nr2recps_x20(
19 size_t n,
20 const float* x,
21 float* y,
22 const void* params)
23 {
24 assert(n % sizeof(float) == 0);
25
26 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27 // The largest z for which sigmoidf(-z) is normalized.
28 // This number is also the largest z for which expf(-z) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30 const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E400p-1f);
33 const float32x4_t vln2_lo = vmovq_n_f32(0x1.7F7D1Cp-20f);
34 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
37 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
38 const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
39 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
40 const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
41
42 for (; n >= 20 * sizeof(float); n -= 20 * sizeof(float)) {
43 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
44 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
45 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
46 const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
47 const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
48
49 // General structure of the algorithm:
50 // / exp(x) / (1 + exp(x)) if x <= 0
51 // f[x] :=
52 // \ 1 - f[-x] if x >= 0
53 //
54 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
55 // then replace result with 1 - f[z] if x >= 0.
56 const float32x4_t vz0123 = vabsq_f32(vx0123);
57 const float32x4_t vz4567 = vabsq_f32(vx4567);
58 const float32x4_t vz89AB = vabsq_f32(vx89AB);
59 const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
60 const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
61
62 // Compute reduced argument n := round(-z / log(2)).
63 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
64 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
65 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
66 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
67 // anyway. We fixup the result for such inputs at the very end of the algorithm.
68 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vz0123, vminus_log2e);
69 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vz4567, vminus_log2e);
70 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vz89AB, vminus_log2e);
71 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vzCDEF, vminus_log2e);
72 float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vzGHIJ, vminus_log2e);
73
74 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
75 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
76 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
77 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
78 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
79 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
80 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23));
81
82 // Subtract the large number back to get final n := round(-z / log(2)).
83 vn0123 = vsubq_f32(vn0123, vmagic_bias);
84 vn4567 = vsubq_f32(vn4567, vmagic_bias);
85 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
86 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
87 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
88
89 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
90 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
91 float32x4_t vt0123 = vmlaq_f32(vz0123, vn0123, vln2_hi);
92 float32x4_t vt4567 = vmlaq_f32(vz4567, vn4567, vln2_hi);
93 float32x4_t vt89AB = vmlaq_f32(vz89AB, vn89AB, vln2_hi);
94 float32x4_t vtCDEF = vmlaq_f32(vzCDEF, vnCDEF, vln2_hi);
95 float32x4_t vtGHIJ = vmlaq_f32(vzGHIJ, vnGHIJ, vln2_hi);
96
97 vt0123 = vmlaq_f32(vt0123, vn0123, vln2_lo);
98 vt4567 = vmlaq_f32(vt4567, vn4567, vln2_lo);
99 vt89AB = vmlaq_f32(vt89AB, vn89AB, vln2_lo);
100 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vln2_lo);
101 vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vln2_lo);
102
103 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
104 float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
105 float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
106 float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
107 float32x4_t vpCDEF = vmlaq_f32(vc4, vc5, vtCDEF);
108 float32x4_t vpGHIJ = vmlaq_f32(vc4, vc5, vtGHIJ);
109
110 vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
111 vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
112 vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
113 vpCDEF = vmlaq_f32(vc3, vpCDEF, vtCDEF);
114 vpGHIJ = vmlaq_f32(vc3, vpGHIJ, vtGHIJ);
115
116 vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
117 vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
118 vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
119 vpCDEF = vmlaq_f32(vc2, vpCDEF, vtCDEF);
120 vpGHIJ = vmlaq_f32(vc2, vpGHIJ, vtGHIJ);
121
122 vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
123 vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
124 vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
125 vpCDEF = vmlaq_f32(vc1, vpCDEF, vtCDEF);
126 vpGHIJ = vmlaq_f32(vc1, vpGHIJ, vtGHIJ);
127
128 // Reconstruct the exp(-z) value:
129 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
130 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
131 // = s + (t * s) * p
132 vt0123 = vmulq_f32(vt0123, vs0123);
133 vt4567 = vmulq_f32(vt4567, vs4567);
134 vt89AB = vmulq_f32(vt89AB, vs89AB);
135 vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
136 vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ);
137
138 float32x4_t ve0123 = vmlaq_f32(vs0123, vp0123, vt0123);
139 float32x4_t ve4567 = vmlaq_f32(vs4567, vp4567, vt4567);
140 float32x4_t ve89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
141 float32x4_t veCDEF = vmlaq_f32(vsCDEF, vpCDEF, vtCDEF);
142 float32x4_t veGHIJ = vmlaq_f32(vsGHIJ, vpGHIJ, vtGHIJ);
143
144 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
145 float32x4_t vd0123 = vaddq_f32(ve0123, vone);
146 float32x4_t vd4567 = vaddq_f32(ve4567, vone);
147 float32x4_t vd89AB = vaddq_f32(ve89AB, vone);
148 float32x4_t vdCDEF = vaddq_f32(veCDEF, vone);
149 float32x4_t vdGHIJ = vaddq_f32(veGHIJ, vone);
150
151 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
152 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
153 // Thus the reciprocal of the denominator never overflows.
154 float32x4_t vr0123 = vrecpeq_f32(vd0123);
155 float32x4_t vr4567 = vrecpeq_f32(vd4567);
156 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
157 float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
158 float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
159
160 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
161 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
162 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
163 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
164 vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
165
166 vr0123 = vmulq_f32(vr0123, vrecpsq_f32(vr0123, vd0123));
167 vr4567 = vmulq_f32(vr4567, vrecpsq_f32(vr4567, vd4567));
168 vr89AB = vmulq_f32(vr89AB, vrecpsq_f32(vr89AB, vd89AB));
169 vrCDEF = vmulq_f32(vrCDEF, vrecpsq_f32(vrCDEF, vdCDEF));
170 vrGHIJ = vmulq_f32(vrGHIJ, vrecpsq_f32(vrGHIJ, vdGHIJ));
171
172 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
173 float32x4_t vf0123 = vmulq_f32(ve0123, vr0123);
174 float32x4_t vf4567 = vmulq_f32(ve4567, vr4567);
175 float32x4_t vf89AB = vmulq_f32(ve89AB, vr89AB);
176 float32x4_t vfCDEF = vmulq_f32(veCDEF, vrCDEF);
177 float32x4_t vfGHIJ = vmulq_f32(veGHIJ, vrGHIJ);
178
179 // For inputs below denormal cutoff, replace output with +0.0f.
180 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
181 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
182 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
183 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
184 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
185 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
186
187 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
188 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
189 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
190 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
191 const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
192 const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
193
194 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
195 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
196 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
197 vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
198 vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
199
200 vst1q_f32(y, vf0123); y += 4;
201 vst1q_f32(y, vf4567); y += 4;
202 vst1q_f32(y, vf89AB); y += 4;
203 vst1q_f32(y, vfCDEF); y += 4;
204 vst1q_f32(y, vfGHIJ); y += 4;
205 }
206 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
207 const float32x4_t vx = vld1q_f32(x); x += 4;
208
209 // General structure of the algorithm:
210 // / exp(x) / (1 + exp(x)) if x <= 0
211 // f[x] :=
212 // \ 1 - f[-x] if x >= 0
213 //
214 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
215 // then replace result with 1 - f[z] if x <= 0.
216 const float32x4_t vz = vabsq_f32(vx);
217
218 // Compute reduced argument n := round(-z / log(2)).
219 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
220 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
221 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
222 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
223 // anyway. We fixup the result for such inputs at the very end of the algorithm.
224 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e);
225
226 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
227 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
228 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
229
230 // Subtract the large number back to get final n := round(-z / log(2)).
231 vn = vsubq_f32(vn, vmagic_bias);
232
233 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
234 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
235 float32x4_t vt = vmlaq_f32(vz, vn, vln2_hi);
236 vt = vmlaq_f32(vt, vn, vln2_lo);
237
238 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
239 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
240 vp = vmlaq_f32(vc3, vp, vt);
241 vp = vmlaq_f32(vc2, vp, vt);
242 vp = vmlaq_f32(vc1, vp, vt);
243
244 // Reconstruct the exp(-z) value:
245 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
246 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
247 // = s + (t * s) * p
248 vt = vmulq_f32(vt, vs);
249 float32x4_t ve = vmlaq_f32(vs, vp, vt);
250
251 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
252 float32x4_t vd = vaddq_f32(ve, vone);
253
254 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
255 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
256 // Thus the reciprocal of the denominator never overflows.
257 float32x4_t vr = vrecpeq_f32(vd);
258
259 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
260
261 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
262
263 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
264 float32x4_t vf = vmulq_f32(ve, vr);
265
266 // For inputs below denormal cutoff, replace output with +0.0f.
267 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
268 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
269
270 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
271 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
272 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
273
274 vst1q_f32(y, vf); y += 4;
275 }
276 if XNN_UNLIKELY(n != 0) {
277 const float32x4_t vx = vld1q_f32(x);
278
279 // General structure of the algorithm:
280 // / exp(x) / (1 + exp(x)) if x <= 0
281 // f[x] :=
282 // \ 1 - f[-x] if x >= 0
283 //
284 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
285 // then replace result with 1 - f[z] if x <= 0.
286 const float32x4_t vz = vabsq_f32(vx);
287
288 // Compute reduced argument n := round(-z / log(2)).
289 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
290 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
291 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
292 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
293 // anyway. We fixup the result for such inputs at the very end of the algorithm.
294 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e);
295
296 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
297 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
298 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
299
300 // Subtract the large number back to get final n := round(-z / log(2)).
301 vn = vsubq_f32(vn, vmagic_bias);
302
303 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
304 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
305 float32x4_t vt = vmlaq_f32(vz, vn, vln2_hi);
306 vt = vmlaq_f32(vt, vn, vln2_lo);
307
308 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
309 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
310 vp = vmlaq_f32(vc3, vp, vt);
311 vp = vmlaq_f32(vc2, vp, vt);
312 vp = vmlaq_f32(vc1, vp, vt);
313
314 // Reconstruct the exp(-z) value:
315 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
316 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
317 // = s + (t * s) * p
318 vt = vmulq_f32(vt, vs);
319 float32x4_t ve = vmlaq_f32(vs, vp, vt);
320
321 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
322 float32x4_t vd = vaddq_f32(ve, vone);
323
324 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
325 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
326 // Thus the reciprocal of the denominator never overflows.
327 float32x4_t vr = vrecpeq_f32(vd);
328
329 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
330
331 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
332
333 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
334 float32x4_t vf = vmulq_f32(ve, vr);
335
336 // For inputs below denormal cutoff, replace output with +0.0f.
337 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
338 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
339
340 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
341 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
342 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
343
344 float32x2_t vf_lo = vget_low_f32(vf);
345 if (n & (2 * sizeof(float))) {
346 vst1_f32(y, vf_lo); y += 2;
347 vf_lo = vget_high_f32(vf);
348 }
349 if (n & (1 * sizeof(float))) {
350 vst1_lane_f32(y, vf_lo, 0);
351 }
352 }
353 }
354