• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut2048-p1.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_2048[2048];
19 
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut2048_p1_div_x20(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut2048_p1_div_x20(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x2048  = vmovq_n_f32(-0x1.715476p11f);
33   const float32x4_t vln2_o2048 = vmovq_n_f32(0x1.62E43p-12f);
34   const float32x4_t vone = vmovq_n_f32(1.0f);
35 
36   const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
37 
38   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
39 
40   for (; n >= 20 * sizeof(float); n -= 20 * sizeof(float)) {
41     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45     const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
46 
47     // General structure of the algorithm:
48     //           / exp(x) / (1 + exp(x)) if x <= 0
49     //   f[x] :=
50     //           \ 1 - f[-x] if x >= 0
51     //
52     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
53     // then replace result with 1 - f[-z] if x >= 0.
54     const float32x4_t vz0123 = vabsq_f32(vx0123);
55     const float32x4_t vz4567 = vabsq_f32(vx4567);
56     const float32x4_t vz89AB = vabsq_f32(vx89AB);
57     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
58     const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
59 
60     // Compute reduced argument n := round(-z * 2048 / log(2)).
61     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
62     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63     // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
64     // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
65     // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
66     // for such inputs at the very end of the algorithm.
67     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x2048);
68     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x2048);
69     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x2048);
70     float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x2048);
71     float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e_x2048);
72 
73     // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
74     // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
75     // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
76     // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from the table using the 6 low bits of n, as integer. Note that the
77     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
78     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
79     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
80     //    and thus the adjusted exponent is not lower than -126.
81     //
82     // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
83     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x7FF))), 12);
84     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x7FF))), 12);
85     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x7FF))), 12);
86     const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x7FF))), 12);
87     const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x7FF))), 12);
88 
89     // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
90     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
91     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
92     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
93     const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
94     const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
95 
96     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
97     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
98     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx01]);
99     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx23]);
100     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
101     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
102     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx45]);
103     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx67]);
104     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
105     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
106     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx89]);
107     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxAB]);
108     const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
109     const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
110     float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxCD]);
111     float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxEF]);
112     const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
113     const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
114     float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxGH]);
115     float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxIJ]);
116 
117     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1);
118     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1);
119     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
120     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx45 >> 32)], vl45, 1);
121     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx67 >> 32)], vl67, 1);
122     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
123     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx89 >> 32)], vl89, 1);
124     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxAB >> 32)], vlAB, 1);
125     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
126     vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxCD >> 32)], vlCD, 1);
127     vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxEF >> 32)], vlEF, 1);
128     const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
129     vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxGH >> 32)], vlGH, 1);
130     vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
131     const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
132 
133     // Adjust exponent of the value l fetched from the table to get the final s value.
134     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
135     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
136     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
137     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
138     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
139 
140     // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
141     vn0123 = vsubq_f32(vn0123, vmagic_bias);
142     vn4567 = vsubq_f32(vn4567, vmagic_bias);
143     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
144     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
145     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
146 
147     // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
148     float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o2048);
149     float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o2048);
150     float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o2048);
151     float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2_o2048);
152     float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2_o2048);
153 
154     // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
155     //   P1(t) = 1 + t * c1
156     const float32x4_t vp0123 = vmulq_f32(vt0123, vc1);
157     const float32x4_t vp4567 = vmulq_f32(vt4567, vc1);
158     const float32x4_t vp89AB = vmulq_f32(vt89AB, vc1);
159     const float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc1);
160     const float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc1);
161 
162     // Reconstruct the exp(-z) value:
163     //   y = s * (1 + t * c1)
164     //     = s + s * (t * c1))
165     //     = s + s * p
166     const float32x4_t vy0123 = vfmaq_f32(vs0123, vs0123, vp0123);
167     const float32x4_t vy4567 = vfmaq_f32(vs4567, vs4567, vp4567);
168     const float32x4_t vy89AB = vfmaq_f32(vs89AB, vs89AB, vp89AB);
169     const float32x4_t vyCDEF = vfmaq_f32(vsCDEF, vsCDEF, vpCDEF);
170     const float32x4_t vyGHIJ = vfmaq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
171 
172     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
173     const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
174     const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
175     const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
176     const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
177     const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone);
178 
179     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
180     float32x4_t vf0123 = vdivq_f32(vy0123, vd0123);
181     float32x4_t vf4567 = vdivq_f32(vy4567, vd4567);
182     float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB);
183     float32x4_t vfCDEF = vdivq_f32(vyCDEF, vdCDEF);
184     float32x4_t vfGHIJ = vdivq_f32(vyGHIJ, vdGHIJ);
185 
186     // For inputs below denormal cutoff, replace output with +0.0f.
187     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
188     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
189     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
190     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
191     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
192     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
193 
194     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
195     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
196     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
197     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
198     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
199     const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
200 
201     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
202     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
203     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
204     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
205     vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
206 
207     vst1q_f32(y, vf0123); y += 4;
208     vst1q_f32(y, vf4567); y += 4;
209     vst1q_f32(y, vf89AB); y += 4;
210     vst1q_f32(y, vfCDEF); y += 4;
211     vst1q_f32(y, vfGHIJ); y += 4;
212   }
213   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
214     const float32x4_t vx = vld1q_f32(x); x += 4;
215 
216     // General structure of the algorithm:
217     //           / exp(x) / (1 + exp(x)) if x <= 0
218     //   f[x] :=
219     //           \ 1 - f[-x] if x >= 0
220     //
221     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
222     // then replace result with 1 - f[-z] if x >= 0.
223     const float32x4_t vz = vabsq_f32(vx);
224 
225     // Compute reduced argument n := round(-z * 2048 / log(2)).
226     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
227     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
228     // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
229     // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
230     // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
231     // for such inputs at the very end of the algorithm.
232     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
233 
234     // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
235     // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
236     // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
237     // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
238     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
239     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
240     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
241     //    and thus the adjusted exponent is not lower than -126.
242     //
243     // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
244     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
245 
246     // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
247     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
248     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
249     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
250     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
251     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
252     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
253     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
254     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
255     // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
256     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
257 
258     // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
259     vn = vsubq_f32(vn, vmagic_bias);
260 
261     // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
262     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o2048);
263 
264     // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
265     //   P1(t) = 1 + t * c1
266     const float32x4_t vp = vmulq_f32(vt, vc1);
267 
268     // Reconstruct the exp(-z) value:
269     //   y = s * (1 + t * c1)
270     //     = s + s * (t * c1))
271     //     = s + s * p
272     const float32x4_t vy = vfmaq_f32(vs, vs, vp);
273 
274     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
275     const float32x4_t vd = vaddq_f32(vy, vone);
276 
277     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
278     float32x4_t vf = vdivq_f32(vy, vd);
279 
280     // For inputs below denormal cutoff, replace output with +0.0f.
281     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
282     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
283 
284     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
285     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
286     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
287 
288     vst1q_f32(y, vf); y += 4;
289   }
290   if XNN_UNLIKELY(n != 0) {
291     const float32x4_t vx = vld1q_f32(x);
292 
293     // General structure of the algorithm:
294     //           / exp(x) / (1 + exp(x)) if x <= 0
295     //   f[x] :=
296     //           \ 1 - f[-x] if x >= 0
297     //
298     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
299     // then replace result with 1 - f[-z] if x >= 0.
300     const float32x4_t vz = vabsq_f32(vx);
301 
302     // Compute reduced argument n := round(-z * 2048 / log(2)).
303     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
304     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
305     // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
306     // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
307     // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
308     // for such inputs at the very end of the algorithm.
309     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
310 
311     // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
312     // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
313     // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
314     // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
315     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
316     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
317     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
318     //    and thus the adjusted exponent is not lower than -126.
319     //
320     // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
321     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
322 
323     // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
324     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
325     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
326     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
327     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
328     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
329     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
330     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
331     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
332     // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
333     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
334 
335     // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
336     vn = vsubq_f32(vn, vmagic_bias);
337 
338     // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
339     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o2048);
340 
341     // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
342     //   P1(t) = 1 + t * c1
343     const float32x4_t vp = vmulq_f32(vt, vc1);
344 
345     // Reconstruct the exp(-z) value:
346     //   y = s * (1 + t * c1)
347     //     = s + s * (t * c1))
348     //     = s + s * p
349     const float32x4_t vy = vfmaq_f32(vs, vs, vp);
350 
351     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
352     const float32x4_t vd = vaddq_f32(vy, vone);
353 
354     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
355     float32x4_t vf = vdivq_f32(vy, vd);
356 
357     // For inputs below denormal cutoff, replace output with +0.0f.
358     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
359     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
360 
361     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
362     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
363     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
364 
365     float32x2_t vf_lo = vget_low_f32(vf);
366     if (n & (2 * sizeof(float))) {
367       vst1_f32(y, vf_lo); y += 2;
368       vf_lo = vget_high_f32(vf);
369     }
370     if (n & (1 * sizeof(float))) {
371       vst1_lane_f32(y, vf_lo, 0);
372     }
373   }
374 }
375