• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut2048-p1.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_2048[2048];
19 
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut2048_p1_nr1recps1fma_x4(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut2048_p1_nr1recps1fma_x4(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x2048  = vmovq_n_f32(-0x1.715476p11f);
33   const float32x4_t vln2_o2048 = vmovq_n_f32(0x1.62E43p-12f);
34   const float32x4_t vone = vmovq_n_f32(1.0f);
35 
36   const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
37 
38   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
39 
40   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
41     const float32x4_t vx = vld1q_f32(x); x += 4;
42 
43     // General structure of the algorithm:
44     //           / exp(x) / (1 + exp(x)) if x <= 0
45     //   f[x] :=
46     //           \ 1 - f[-x] if x >= 0
47     //
48     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
49     // then replace result with 1 - f[-z] if x >= 0.
50     const float32x4_t vz = vabsq_f32(vx);
51 
52     // Compute reduced argument n := round(-z * 2048 / log(2)).
53     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
54     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
55     // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
56     // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
57     // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
58     // for such inputs at the very end of the algorithm.
59     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
60 
61     // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
62     // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
63     // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
64     // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
65     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
66     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
67     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
68     //    and thus the adjusted exponent is not lower than -126.
69     //
70     // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
71     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
72 
73     // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
74     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
75     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
76     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
77     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
78     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
79     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
80     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
81     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
82     // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
83     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
84 
85     // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
86     vn = vsubq_f32(vn, vmagic_bias);
87 
88     // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
89     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o2048);
90 
91     // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
92     //   P1(t) = 1 + t * c1
93     const float32x4_t vp = vmulq_f32(vt, vc1);
94 
95     // Reconstruct the exp(-z) value:
96     //   y = s * (1 + t * c1)
97     //     = s + s * (t * c1))
98     //     = s + s * p
99     const float32x4_t vy = vfmaq_f32(vs, vs, vp);
100 
101     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
102     const float32x4_t vd = vaddq_f32(vy, vone);
103 
104     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
105     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
106     // Thus the reciprocal of the denominator never overflows.
107     float32x4_t vr = vrecpeq_f32(vd);
108 
109     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
110 
111     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
112 
113     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
114     float32x4_t vf = vmulq_f32(vy, vr);
115 
116     // For inputs below denormal cutoff, replace output with +0.0f.
117     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
118     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
119 
120     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
121     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
122     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
123 
124     vst1q_f32(y, vf); y += 4;
125   }
126   if XNN_UNLIKELY(n != 0) {
127     const float32x4_t vx = vld1q_f32(x);
128 
129     // General structure of the algorithm:
130     //           / exp(x) / (1 + exp(x)) if x <= 0
131     //   f[x] :=
132     //           \ 1 - f[-x] if x >= 0
133     //
134     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
135     // then replace result with 1 - f[-z] if x >= 0.
136     const float32x4_t vz = vabsq_f32(vx);
137 
138     // Compute reduced argument n := round(-z * 2048 / log(2)).
139     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
140     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
141     // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
142     // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
143     // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
144     // for such inputs at the very end of the algorithm.
145     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
146 
147     // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
148     // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
149     // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
150     // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
151     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
152     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
153     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
154     //    and thus the adjusted exponent is not lower than -126.
155     //
156     // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
157     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
158 
159     // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
160     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
161     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
162     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
163     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
164     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
165     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
166     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
167     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
168     // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
169     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
170 
171     // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
172     vn = vsubq_f32(vn, vmagic_bias);
173 
174     // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
175     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o2048);
176 
177     // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
178     //   P1(t) = 1 + t * c1
179     const float32x4_t vp = vmulq_f32(vt, vc1);
180 
181     // Reconstruct the exp(-z) value:
182     //   y = s * (1 + t * c1)
183     //     = s + s * (t * c1))
184     //     = s + s * p
185     const float32x4_t vy = vfmaq_f32(vs, vs, vp);
186 
187     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
188     const float32x4_t vd = vaddq_f32(vy, vone);
189 
190     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
191     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
192     // Thus the reciprocal of the denominator never overflows.
193     float32x4_t vr = vrecpeq_f32(vd);
194 
195     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
196 
197     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
198 
199     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
200     float32x4_t vf = vmulq_f32(vy, vr);
201 
202     // For inputs below denormal cutoff, replace output with +0.0f.
203     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
204     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
205 
206     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
207     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
208     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
209 
210     float32x2_t vf_lo = vget_low_f32(vf);
211     if (n & (2 * sizeof(float))) {
212       vst1_f32(y, vf_lo); y += 2;
213       vf_lo = vget_high_f32(vf);
214     }
215     if (n & (1 * sizeof(float))) {
216       vst1_lane_f32(y, vf_lo, 0);
217     }
218   }
219 }
220