1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut2048-p1.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_2048[2048];
19
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut2048_p1_nr1recps1fma_x4(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut2048_p1_nr1recps1fma_x4(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x2048 = vmovq_n_f32(-0x1.715476p11f);
33 const float32x4_t vln2_o2048 = vmovq_n_f32(0x1.62E43p-12f);
34 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
39
40 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
41 const float32x4_t vx = vld1q_f32(x); x += 4;
42
43 // General structure of the algorithm:
44 // / exp(x) / (1 + exp(x)) if x <= 0
45 // f[x] :=
46 // \ 1 - f[-x] if x >= 0
47 //
48 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
49 // then replace result with 1 - f[-z] if x >= 0.
50 const float32x4_t vz = vabsq_f32(vx);
51
52 // Compute reduced argument n := round(-z * 2048 / log(2)).
53 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
54 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
55 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
56 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
57 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
58 // for such inputs at the very end of the algorithm.
59 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
60
61 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
62 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
63 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
64 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
65 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
66 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
67 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
68 // and thus the adjusted exponent is not lower than -126.
69 //
70 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
71 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
72
73 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
74 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
75 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
76 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
77 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
78 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
79 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
80 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
81 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
82 // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
83 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
84
85 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
86 vn = vsubq_f32(vn, vmagic_bias);
87
88 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
89 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o2048);
90
91 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
92 // P1(t) = 1 + t * c1
93 const float32x4_t vp = vmulq_f32(vt, vc1);
94
95 // Reconstruct the exp(-z) value:
96 // y = s * (1 + t * c1)
97 // = s + s * (t * c1))
98 // = s + s * p
99 const float32x4_t vy = vfmaq_f32(vs, vs, vp);
100
101 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
102 const float32x4_t vd = vaddq_f32(vy, vone);
103
104 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
105 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
106 // Thus the reciprocal of the denominator never overflows.
107 float32x4_t vr = vrecpeq_f32(vd);
108
109 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
110
111 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
112
113 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
114 float32x4_t vf = vmulq_f32(vy, vr);
115
116 // For inputs below denormal cutoff, replace output with +0.0f.
117 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
118 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
119
120 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
121 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
122 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
123
124 vst1q_f32(y, vf); y += 4;
125 }
126 if XNN_UNLIKELY(n != 0) {
127 const float32x4_t vx = vld1q_f32(x);
128
129 // General structure of the algorithm:
130 // / exp(x) / (1 + exp(x)) if x <= 0
131 // f[x] :=
132 // \ 1 - f[-x] if x >= 0
133 //
134 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
135 // then replace result with 1 - f[-z] if x >= 0.
136 const float32x4_t vz = vabsq_f32(vx);
137
138 // Compute reduced argument n := round(-z * 2048 / log(2)).
139 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
140 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
141 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
142 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
143 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
144 // for such inputs at the very end of the algorithm.
145 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
146
147 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
148 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
149 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
150 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
151 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
152 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
153 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
154 // and thus the adjusted exponent is not lower than -126.
155 //
156 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
157 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
158
159 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
160 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
161 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
162 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
163 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
164 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
165 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
166 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
167 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
168 // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
169 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
170
171 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
172 vn = vsubq_f32(vn, vmagic_bias);
173
174 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
175 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o2048);
176
177 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
178 // P1(t) = 1 + t * c1
179 const float32x4_t vp = vmulq_f32(vt, vc1);
180
181 // Reconstruct the exp(-z) value:
182 // y = s * (1 + t * c1)
183 // = s + s * (t * c1))
184 // = s + s * p
185 const float32x4_t vy = vfmaq_f32(vs, vs, vp);
186
187 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
188 const float32x4_t vd = vaddq_f32(vy, vone);
189
190 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
191 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
192 // Thus the reciprocal of the denominator never overflows.
193 float32x4_t vr = vrecpeq_f32(vd);
194
195 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
196
197 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
198
199 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
200 float32x4_t vf = vmulq_f32(vy, vr);
201
202 // For inputs below denormal cutoff, replace output with +0.0f.
203 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
204 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
205
206 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
207 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
208 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
209
210 float32x2_t vf_lo = vget_low_f32(vf);
211 if (n & (2 * sizeof(float))) {
212 vst1_f32(y, vf_lo); y += 2;
213 vf_lo = vget_high_f32(vf);
214 }
215 if (n & (1 * sizeof(float))) {
216 vst1_lane_f32(y, vf_lo, 0);
217 }
218 }
219 }
220