1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut2048-p1.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_2048[2048];
19
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut2048_p1_nr2fma_x16(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut2048_p1_nr2fma_x16(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x2048 = vmovq_n_f32(-0x1.715476p11f);
33 const float32x4_t vln2_o2048 = vmovq_n_f32(0x1.62E43p-12f);
34 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
39
40 for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
41 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44 const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45
46 // General structure of the algorithm:
47 // / exp(x) / (1 + exp(x)) if x <= 0
48 // f[x] :=
49 // \ 1 - f[-x] if x >= 0
50 //
51 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
52 // then replace result with 1 - f[-z] if x >= 0.
53 const float32x4_t vz0123 = vabsq_f32(vx0123);
54 const float32x4_t vz4567 = vabsq_f32(vx4567);
55 const float32x4_t vz89AB = vabsq_f32(vx89AB);
56 const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
57
58 // Compute reduced argument n := round(-z * 2048 / log(2)).
59 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
60 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
62 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
63 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
64 // for such inputs at the very end of the algorithm.
65 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x2048);
66 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x2048);
67 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x2048);
68 float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x2048);
69
70 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
71 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
72 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
73 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from the table using the 6 low bits of n, as integer. Note that the
74 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
75 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
76 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
77 // and thus the adjusted exponent is not lower than -126.
78 //
79 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
80 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x7FF))), 12);
81 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x7FF))), 12);
82 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x7FF))), 12);
83 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x7FF))), 12);
84
85 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
86 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
87 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
88 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
89 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
90
91 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
92 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
93 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx01]);
94 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx23]);
95 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
96 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
97 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx45]);
98 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx67]);
99 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
100 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
101 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx89]);
102 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxAB]);
103 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
104 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
105 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxCD]);
106 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidxEF]);
107
108 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1);
109 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1);
110 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
111 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx45 >> 32)], vl45, 1);
112 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx67 >> 32)], vl67, 1);
113 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
114 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx89 >> 32)], vl89, 1);
115 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxAB >> 32)], vlAB, 1);
116 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
117 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxCD >> 32)], vlCD, 1);
118 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidxEF >> 32)], vlEF, 1);
119 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
120
121 // Adjust exponent of the value l fetched from the table to get the final s value.
122 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
123 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
124 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
125 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
126
127 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
128 vn0123 = vsubq_f32(vn0123, vmagic_bias);
129 vn4567 = vsubq_f32(vn4567, vmagic_bias);
130 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
131 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
132
133 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
134 float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o2048);
135 float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o2048);
136 float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o2048);
137 float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2_o2048);
138
139 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
140 // P1(t) = 1 + t * c1
141 const float32x4_t vp0123 = vmulq_f32(vt0123, vc1);
142 const float32x4_t vp4567 = vmulq_f32(vt4567, vc1);
143 const float32x4_t vp89AB = vmulq_f32(vt89AB, vc1);
144 const float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc1);
145
146 // Reconstruct the exp(-z) value:
147 // y = s * (1 + t * c1)
148 // = s + s * (t * c1))
149 // = s + s * p
150 const float32x4_t vy0123 = vfmaq_f32(vs0123, vs0123, vp0123);
151 const float32x4_t vy4567 = vfmaq_f32(vs4567, vs4567, vp4567);
152 const float32x4_t vy89AB = vfmaq_f32(vs89AB, vs89AB, vp89AB);
153 const float32x4_t vyCDEF = vfmaq_f32(vsCDEF, vsCDEF, vpCDEF);
154
155 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
156 const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
157 const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
158 const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
159 const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
160
161 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
162 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
163 // Thus the reciprocal of the denominator never overflows.
164 float32x4_t vr0123 = vrecpeq_f32(vd0123);
165 float32x4_t vr4567 = vrecpeq_f32(vd4567);
166 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
167 float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
168
169 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
170 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
171 vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
172 vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF));
173
174 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
175 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
176 vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
177 vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF));
178
179 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
180 float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
181 float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
182 float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
183 float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
184
185 // For inputs below denormal cutoff, replace output with +0.0f.
186 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
187 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
188 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
189 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
190 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
191
192 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
193 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
194 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
195 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
196 const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
197
198 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
199 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
200 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
201 vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
202
203 vst1q_f32(y, vf0123); y += 4;
204 vst1q_f32(y, vf4567); y += 4;
205 vst1q_f32(y, vf89AB); y += 4;
206 vst1q_f32(y, vfCDEF); y += 4;
207 }
208 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
209 const float32x4_t vx = vld1q_f32(x); x += 4;
210
211 // General structure of the algorithm:
212 // / exp(x) / (1 + exp(x)) if x <= 0
213 // f[x] :=
214 // \ 1 - f[-x] if x >= 0
215 //
216 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
217 // then replace result with 1 - f[-z] if x >= 0.
218 const float32x4_t vz = vabsq_f32(vx);
219
220 // Compute reduced argument n := round(-z * 2048 / log(2)).
221 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
222 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
223 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
224 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
225 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
226 // for such inputs at the very end of the algorithm.
227 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
228
229 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
230 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
231 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
232 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
233 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
234 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
235 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
236 // and thus the adjusted exponent is not lower than -126.
237 //
238 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
239 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
240
241 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
242 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
243 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
244 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
245 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
246 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
247 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
248 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
249 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
250 // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
251 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
252
253 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
254 vn = vsubq_f32(vn, vmagic_bias);
255
256 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
257 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o2048);
258
259 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
260 // P1(t) = 1 + t * c1
261 const float32x4_t vp = vmulq_f32(vt, vc1);
262
263 // Reconstruct the exp(-z) value:
264 // y = s * (1 + t * c1)
265 // = s + s * (t * c1))
266 // = s + s * p
267 const float32x4_t vy = vfmaq_f32(vs, vs, vp);
268
269 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
270 const float32x4_t vd = vaddq_f32(vy, vone);
271
272 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
273 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
274 // Thus the reciprocal of the denominator never overflows.
275 float32x4_t vr = vrecpeq_f32(vd);
276
277 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
278
279 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
280
281 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
282 float32x4_t vf = vmulq_f32(vy, vr);
283
284 // For inputs below denormal cutoff, replace output with +0.0f.
285 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
286 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
287
288 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
289 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
290 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
291
292 vst1q_f32(y, vf); y += 4;
293 }
294 if XNN_UNLIKELY(n != 0) {
295 const float32x4_t vx = vld1q_f32(x);
296
297 // General structure of the algorithm:
298 // / exp(x) / (1 + exp(x)) if x <= 0
299 // f[x] :=
300 // \ 1 - f[-x] if x >= 0
301 //
302 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
303 // then replace result with 1 - f[-z] if x >= 0.
304 const float32x4_t vz = vabsq_f32(vx);
305
306 // Compute reduced argument n := round(-z * 2048 / log(2)).
307 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
308 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
309 // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
310 // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
311 // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
312 // for such inputs at the very end of the algorithm.
313 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x2048);
314
315 // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
316 // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
317 // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
318 // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
319 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
320 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
321 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
322 // and thus the adjusted exponent is not lower than -126.
323 //
324 // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
325 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
326
327 // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
328 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
329 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
330 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
331 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
332 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
333 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
334 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
335 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
336 // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
337 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
338
339 // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
340 vn = vsubq_f32(vn, vmagic_bias);
341
342 // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
343 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o2048);
344
345 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
346 // P1(t) = 1 + t * c1
347 const float32x4_t vp = vmulq_f32(vt, vc1);
348
349 // Reconstruct the exp(-z) value:
350 // y = s * (1 + t * c1)
351 // = s + s * (t * c1))
352 // = s + s * p
353 const float32x4_t vy = vfmaq_f32(vs, vs, vp);
354
355 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
356 const float32x4_t vd = vaddq_f32(vy, vone);
357
358 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
359 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
360 // Thus the reciprocal of the denominator never overflows.
361 float32x4_t vr = vrecpeq_f32(vd);
362
363 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
364
365 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
366
367 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
368 float32x4_t vf = vmulq_f32(vy, vr);
369
370 // For inputs below denormal cutoff, replace output with +0.0f.
371 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
372 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
373
374 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
375 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
376 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
377
378 float32x2_t vf_lo = vget_low_f32(vf);
379 if (n & (2 * sizeof(float))) {
380 vst1_f32(y, vf_lo); y += 2;
381 vf_lo = vget_high_f32(vf);
382 }
383 if (n & (1 * sizeof(float))) {
384 vst1_lane_f32(y, vf_lo, 0);
385 }
386 }
387 }
388